Page MenuHomePhabricator

No OneTemporary

diff --git a/AIMeiSheng/SpeakerEncoder/README.md b/AIMeiSheng/SpeakerEncoder/README.md
new file mode 100644
index 0000000..f1e6bce
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/README.md
@@ -0,0 +1,17 @@
+# Speaker Encoder
+
+
+This repository contains the Speaker Encoder model of <a href="https://github.com/mozilla/TTS">Mozilla TTS</a> repository without additional modules for easy-to-use computation of speech embeddings.
+
+### Steps
+- Clone the repository<br>
+- Download a pretrained speaker encoder model from here: https://github.com/mozilla/TTS/wiki/Released-Models <br>
+**Preferred**: Speaker-Encoder by @mueller91
+
+- Copy files `config.json` and `best_model.pth.tar` to the folder `pretrained_model`
+
+- Run `python compute_embedding.py --input_type "single_file" --input_path "WAV_PATH" --output_name "out.pkl"` by specifying path to a wav file
+
+It prints the embedding vector and also saves it in a pickle file with the key `default`
+
+** To compute embedding vectors for wav files inside a folder, please check the bash script `./scripts/batch_folder.sh`
\ No newline at end of file
diff --git a/AIMeiSheng/SpeakerEncoder/cal_cos_distance_folder.py b/AIMeiSheng/SpeakerEncoder/cal_cos_distance_folder.py
new file mode 100644
index 0000000..40f70ef
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/cal_cos_distance_folder.py
@@ -0,0 +1,47 @@
+import torch
+import numpy as np
+import sys
+
+from scipy.spatial.distance import cosine
+
+def l2_norm(s1, s2):
+ norm = torch.sum(s1 * s2, -1, keepdim=True)
+ return norm
+
+def cos_distance(s1,s2,eps=1e-8):
+ '''#方法1
+ s1_s2_norm = l2_norm(s1, s2)
+ s2_s2_norm = l2_norm(s2, s2)
+ s1_s1_norm = l2_norm(s1, s1)
+ #print('s1_s1_norm: ',s1_s1_norm)
+ #print('s1_s2_norm: ',s1_s2_norm)
+ #print('s2_s2_norm: ',s2_s2_norm)
+ loss = s1_s2_norm / (torch.sqrt(s2_s2_norm *s1_s1_norm) + eps)
+ #'''
+ loss = (1 - cosine(s1, s2))
+ return loss
+import os
+def load_and_cal_distance(npy_name1,npy_name2):
+ spk1_embead = np.array(np.load(npy_name1 ))#.mean(0)
+ spk2_embead = np.array(np.load(npy_name2 ))#.mean(0)
+ print('dim1:',spk1_embead.shape)
+ print('dim2:',spk2_embead.shape)
+ spk1_embead = torch.from_numpy(spk1_embead)
+ spk2_embead = torch.from_numpy(spk2_embead)
+ loss = cos_distance(spk1_embead,spk2_embead)#.mean(0)
+ print("file:",os.path.basename(npy_name2),"cos distance:", loss)
+ return loss
+
+def cal_cos_folder(target_npy,test_folder):
+ all_files = os.listdir(test_folder)
+ for npy_test in all_files:
+ npy_filename = os.path.join(test_folder,npy_test)
+ load_and_cal_distance(target_npy,npy_filename)
+
+if __name__ == '__main__':
+
+ npy_name1 = sys.argv[1] #"../../test_wav/xiafan_RawNet3/zihao.npy"
+ npy_name2 = sys.argv[2] #"../../test_wav/xiafan_RawNet3/"
+
+ #load_and_cal_distance(npy_name1,npy_name2)
+ cal_cos_folder(npy_name1,npy_name2)
diff --git a/AIMeiSheng/SpeakerEncoder/compute_embedding.py b/AIMeiSheng/SpeakerEncoder/compute_embedding.py
new file mode 100644
index 0000000..e081c11
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/compute_embedding.py
@@ -0,0 +1,130 @@
+from limit_threads import *
+import argparse
+import glob
+import os
+import numpy as np
+import pickle
+import random
+from tqdm import tqdm
+import torch
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from functools import partial
+from speaker_encoder.model import SpeakerEncoder
+from speaker_encoder.audio import AudioProcessor
+from speaker_encoder.io import load_config
+
+
+class SpeechEmbedding():
+ def __init__(self, config, model_path):
+ self.ap = AudioProcessor(**config['audio'])
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ # Define Encoder model and load pretrained checkpoint
+ self.model = SpeakerEncoder(**config.model).to(self.device)
+ self.model.load_state_dict(torch.load(model_path, map_location=self.device)['model'])
+ self.model.eval()
+
+ def compute_embedding(self, wav_file, itr, total, verbose=True):
+ if verbose:
+ print(f"Computing embedding for file {itr}/{total}")
+
+ mel_spec = self.ap.melspectrogram(self.ap.load_wav(wav_file, sr=self.ap.sample_rate)).T
+ mel_spec = torch.FloatTensor(mel_spec[None, :, :])
+ mel_spec = mel_spec.to(self.device)
+ embedd = self.model.compute_embedding(mel_spec)
+ embedd = embedd.detach().cpu().numpy()
+
+ return embedd
+
+
+def main(args):
+ config = load_config(args.config_path)
+ speech_embedding = SpeechEmbedding(config, args.model_path)
+ if (not os.path.exists(args.output_path)):
+ os.mkdir(args.output_path)
+
+ emb_dict = {}
+ # Compute speaker embeddings
+ if args.input_type == "single_file":
+ wav_file = args.input_path
+ embedd = speech_embedding.compute_embedding(wav_file, 1, 1)
+ embedd = embedd[0]
+ emb_dict[args.speaker_name] = embedd
+ print(embedd)
+ else:
+ if args.input_type == "single_speaker":
+ spk_list = [args.speaker_name]
+ elif args.input_type == "multi_speaker":
+ spk_list = os.listdir(args.input_path)
+
+ executor = ProcessPoolExecutor(max_workers=args.num_workers)
+ for spk_itr, spk_name in enumerate(spk_list):
+ print(f"========== Speaker {spk_itr}/{len(spk_list)}::")
+ if args.input_type == "single_speaker":
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ elif args.input_type == "multi_speaker":
+ #wav_files = glob.glob(os.path.join(args.input_path, spk_name, "*.wav"))
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ print('wav_files:',wav_files)
+ # Skip if no wav available for speaker
+ if len(wav_files) == 0:
+ continue
+
+ # Randomly shuffle and select a sub-list of num_wavs != -1
+ if args.num_wavs != -1:
+ print(f"Selecting {args.num_wavs} random wavs ...")
+ random.shuffle(wav_files)
+ wav_files = wav_files[:args.num_wavs]
+
+ # Compute embeddings for all wav files
+ all_embdds = []
+ for itr, wav_file in enumerate(wav_files):
+ # embedd = executor.submit(speech_embedding.compute_embedding,
+ # wav_file,
+ # itr,
+ # len(wav_files))
+ embedd = speech_embedding.compute_embedding(wav_file, itr, len(wav_files))
+ all_embdds.append((os.path.basename(wav_file), embedd[0]))
+
+ # for basename_tmp, embedd in concurrent.futures.as_completed(all_embdds):
+ for basename_tmp, embedd in all_embdds:
+ print('embedd:',embedd.shape)
+
+ # basename_tmp = os.path.basename(wav_files)
+ out_dirname = os.path.join(args.output_path, basename_tmp)[:-4] + '.npy'
+ print('out_dirname:',out_dirname)
+ np.save(out_dirname, embedd)
+
+ # print('out_dirname1:', all_embdds[0][0],all_embdds[0][1].result())
+ # Process outputs
+ # all_embdds = [(embedd[0], embedd[1].result()) for embedd in all_embdds if embedd[1].result() is not None]
+ # print('out_dirname2:',all_embdds)
+ # # Add embedding of all files
+ # emb_dict[spk_name] = {}
+ # if args.mode == "all_embs":
+ # emb_dict[spk_name].update({embed[0]:embed[1][0] for embed in all_embdds})
+ #
+ # # Add mean of embeddings
+ # all_embdds_list = [list(embedd[1][0]) for embedd in all_embdds]
+ # embedd_mean = np.mean(np.array(all_embdds_list), axis=0)
+ # emb_dict[spk_name].update({"mean":embedd_mean})
+
+ # with open(os.path.join(args.output_path, f"{args.output_name}_emb.pkl"), "wb") as pkl_file:
+ # pickle.dump(emb_dict, pkl_file)
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model_path', type=str, default="pretrained_model/best_model.pth.tar", required=False)
+ parser.add_argument('--config_path', type=str, default="pretrained_model/config.json", required=False)
+ parser.add_argument('--output_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_type', type=str, default="file", required=False) # single_speaker, #multi_speaker
+ parser.add_argument('--speaker_name', type=str, default="default", required=False)
+ parser.add_argument('--num_wavs', type=int, default=20, required=False)
+ parser.add_argument('--num_workers', type=int, default=10, required=False)
+ #parser.add_argument('--output_name', type=str, required=True)
+ parser.add_argument('--mode', type=str, default="all_embs", required=False)
+
+ args = parser.parse_args()
+
+ main(args)
diff --git a/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi.py b/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi.py
new file mode 100644
index 0000000..96a3988
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi.py
@@ -0,0 +1,202 @@
+from limit_threads import *
+import argparse
+import glob
+import os
+import sys
+import numpy as np
+import pickle
+import random
+from tqdm import tqdm
+import torch
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from functools import partial
+from speaker_encoder.model import SpeakerEncoder
+from speaker_encoder.audio import AudioProcessor
+from speaker_encoder.io import load_config
+
+from multi_threads_wraper import ThreadPool_process_core
+
+class SpeechEmbedding():
+ def __init__(self, config, model_path):
+ self.ap = AudioProcessor(**config['audio'])
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ # Define Encoder model and load pretrained checkpoint
+ self.model = SpeakerEncoder(**config.model).to(self.device)
+ self.model.load_state_dict(torch.load(model_path, map_location=self.device)['model'])
+ self.model.eval()
+
+ def compute_embedding(self, wav_file, itr, total, verbose=True):
+ if verbose:
+ print(f"Computing embedding for file {itr}/{total}")
+
+ mel_spec = self.ap.melspectrogram(self.ap.load_wav(wav_file, sr=self.ap.sample_rate)).T
+ mel_spec = torch.FloatTensor(mel_spec[None, :, :])
+ mel_spec = mel_spec.to(self.device)
+ embedd = self.model.compute_embedding(mel_spec)
+ embedd = embedd.detach().cpu().numpy()
+
+ return embedd
+
+
+
+from time import sleep, time
+from multi_threads_wraper import ThreadPool_process_core
+def main_filelist_multi(args) -> None:
+
+ config = load_config(args.config_path)
+ model = SpeechEmbedding(config, args.model_path)
+
+
+ def process_embed_extra(wav_filename, out_dirname):
+ print("@@@@input wav name :", wav_filename)
+ print("embedding out_dirname: ", out_dirname)
+ if not os.path.exists(out_dirname):
+ embedd = model.compute_embedding(wav_filename, 1, 1)
+ output = embedd[0]
+ print("embead shapexx:")#, output)#.size())
+
+ np.save(out_dirname, output)#.detach().cpu().numpy())
+ return
+
+ ###finish文件下载以后,进行数据提取
+ if args.filelist is not None:
+ with open(args.filelist, "r") as file:
+ # 按行读取文件内容
+ lines = file.readlines()
+ #lines = lines[:10]
+ # # 遍历每一行并输出
+ print("len_lines: ",len(lines))
+ cnt = 0
+ src_para = []
+ des_para = []
+ start_time = time()
+ for line in lines:
+ cnt += 1
+ print(f"cnt: {cnt}/{len(lines)}")
+ #print(line.strip()) # 使用 strip() 方法移除行尾的换行符
+ ###这块提取出来wav文件路径。。。。
+ wav_filename = line.split('|')[0] #/data/bingxiao.fang/voice_conversion/Retrieval-based-Voice-Conversion-WebUIx/content/Retrieval-based-Voice-Conversion-WebUI/logs/xusong_v2_org_version_multispk_eaysing4/用户1-男_wav_part/0_gt_wavs/5_17.wav
+
+ basename_tmp = os.path.basename(wav_filename)
+ dir_parent = os.path.dirname(os.path.dirname(wav_filename))
+ out_dir = os.path.join(dir_parent, '5_embed256')
+ if(not os.path.exists(out_dir)):
+ os.mkdir(out_dir)
+ print("mkdir out_dir: ",out_dir)
+
+ out_dirname = os.path.join(out_dir, basename_tmp)[:-4] + '.npy'
+ src_para.append(wav_filename)
+ des_para.append(out_dirname)
+ # print('wav_filename:',wav_filename)
+ # print('out_dirname:', out_dirname)
+
+ for idx in range(len(des_para)):
+ process_embed_extra(src_para[idx], des_para[idx])
+ #ThreadPool_process_core(process_embed_extra, src_para, des_para)
+ end_time = time()
+ duration = end_time - start_time
+ print("process finished cost {:.3f} seconds ,".format(duration))
+
+ return
+
+
+def main(args):
+ config = load_config(args.config_path)
+ speech_embedding = SpeechEmbedding(config, args.model_path)
+ if (not os.path.exists(args.output_path)):
+ os.mkdir(args.output_path)
+
+ emb_dict = {}
+ # Compute speaker embeddings
+ if args.input_type == "single_file":
+ wav_file = args.input_path
+ embedd = speech_embedding.compute_embedding(wav_file, 1, 1)
+ embedd = embedd[0]
+ emb_dict[args.speaker_name] = embedd
+ print(embedd)
+ else:
+ if args.input_type == "single_speaker":
+ spk_list = [args.speaker_name]
+ elif args.input_type == "multi_speaker":
+ spk_list = os.listdir(args.input_path)
+
+ # executor = ProcessPoolExecutor(max_workers=args.num_workers)
+ for spk_itr, spk_name in enumerate(spk_list):
+ print(f"========== Speaker {spk_itr}/{len(spk_list)}::")
+ if args.input_type == "single_speaker":
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ elif args.input_type == "multi_speaker":
+ #wav_files = glob.glob(os.path.join(args.input_path, spk_name, "*.wav"))
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ print('wav_files:',wav_files)
+ # Skip if no wav available for speaker
+ if len(wav_files) == 0:
+ continue
+
+ # Randomly shuffle and select a sub-list of num_wavs != -1
+ if args.num_wavs != -1:
+ print(f"Selecting {args.num_wavs} random wavs ...")
+ random.shuffle(wav_files)
+ wav_files = wav_files[:args.num_wavs]
+
+ # Compute embeddings for all wav files
+ all_embdds = []
+
+ if 1:
+ for wav_filename in wav_files:
+ basename_tmp = os.path.basename(wav_filename)
+ # dir_parent = os.path.dirname(os.path.dirname(wav_filename))
+ # out_dir = os.path.join(dir_parent, '4_embed256')
+ if (not os.path.exists(out_dir)):
+ os.mkdir(out_dir)
+ # print("mkdir out_dir: ",out_dir)
+
+ out_dirname = os.path.join(out_dir, basename_tmp)[:-4] + '.npy'
+ src_para.append(wav_filename)
+ des_para.append(out_dirname)
+
+ ThreadPool_process_core(process_embed_extra, src_para, des_para)
+ else:
+ for itr, wav_file in enumerate(wav_files):
+ # embedd = executor.submit(speech_embedding.compute_embedding,
+ # wav_file,
+ # itr,
+ # len(wav_files))
+ embedd = speech_embedding.compute_embedding(wav_file, itr, len(wav_files))
+ all_embdds.append((os.path.basename(wav_file), embedd[0]))
+
+ # for basename_tmp, embedd in concurrent.futures.as_completed(all_embdds):
+ for basename_tmp, embedd in all_embdds:
+ print('embedd:',embedd.shape)
+
+ # basename_tmp = os.path.basename(wav_files)
+ out_dirname = os.path.join(args.output_path, basename_tmp)[:-4] + '.npy'
+ print('out_dirname:',out_dirname)
+ np.save(out_dirname, embedd)
+
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model_path', type=str, default="pretrained_model/best_model.pth.tar", required=False)
+ parser.add_argument('--config_path', type=str, default="pretrained_model/config.json", required=False)
+ parser.add_argument('--output_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_type', type=str, default="file", required=False) # single_speaker, #multi_speaker
+ parser.add_argument('--speaker_name', type=str, default="default", required=False)
+ parser.add_argument('--num_wavs', type=int, default=20, required=False)
+ parser.add_argument('--num_workers', type=int, default=10, required=False)
+ #parser.add_argument('--output_name', type=str, required=True)
+ parser.add_argument('--mode', type=str, default="all_embs", required=False)
+ parser.add_argument(
+ "--filelist",
+ type=str,
+ default="",
+ help="Input filelist to extract embedding in rvc.",
+ )
+
+ args = parser.parse_args()
+
+ # main(args)
+ sys.exit(main_filelist_multi(args))
diff --git a/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi_test.py b/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi_test.py
new file mode 100644
index 0000000..e3e0fc4
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/compute_embedding_svc_multi_test.py
@@ -0,0 +1,248 @@
+import os
+import sys
+sys.path.append(os.path.dirname(__file__))
+from limit_threads import *
+import argparse
+import glob
+#import os
+#import sys
+import numpy as np
+import pickle
+import random
+from tqdm import tqdm
+import torch
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from functools import partial
+from speaker_encoder.model import SpeakerEncoder
+from speaker_encoder.audio import AudioProcessor
+from speaker_encoder.io import load_config
+
+from multi_threads_wraper import ThreadPool_process_core
+
+class SpeechEmbedding():
+ def __init__(self, config, model_path):
+ self.ap = AudioProcessor(**config['audio'])
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ # Define Encoder model and load pretrained checkpoint
+ self.model = SpeakerEncoder(**config.model).to(self.device)
+ self.model.load_state_dict(torch.load(model_path, map_location=self.device)['model'])
+ self.model.eval()
+
+ def compute_embedding(self, wav_file, itr, total, verbose=True):
+ if verbose:
+ print(f"Computing embedding for file {itr}/{total}")
+
+ mel_spec = self.ap.melspectrogram(self.ap.load_wav(wav_file, sr=self.ap.sample_rate)).T
+ mel_spec = torch.FloatTensor(mel_spec[None, :, :])
+ mel_spec = mel_spec.to(self.device)
+ embedd = self.model.compute_embedding(mel_spec)
+ embedd = embedd.detach().cpu().numpy()
+
+ return embedd
+
+
+
+from time import sleep, time
+from multi_threads_wraper import ThreadPool_process_core
+def main_filelist_multi(args) -> None:
+
+ config = load_config(args.config_path)
+ model = SpeechEmbedding(config, args.model_path)
+
+
+ def process_embed_extra(wav_filename, out_dirname):
+ print("@@@@input wav name :", wav_filename)
+ print("embedding out_dirname: ", out_dirname)
+ if not os.path.exists(out_dirname):
+ embedd = model.compute_embedding(wav_filename, 1, 1)
+ output = embedd[0]
+ print("embead shapexx:")#, output)#.size())
+
+ np.save(out_dirname, output)#.detach().cpu().numpy())
+ return
+
+ ###finish文件下载以后,进行数据提取
+ if args.filelist is not None:
+ with open(args.filelist, "r") as file:
+ # 按行读取文件内容
+ lines = file.readlines()
+ #lines = lines[:10]
+ # # 遍历每一行并输出
+ print("len_lines: ",len(lines))
+ cnt = 0
+ src_para = []
+ des_para = []
+ start_time = time()
+ for line in lines:
+ cnt += 1
+ print(f"cnt: {cnt}/{len(lines)}")
+ #print(line.strip()) # 使用 strip() 方法移除行尾的换行符
+ ###这块提取出来wav文件路径。。。。
+ wav_filename = line.split('|')[0] #/data/bingxiao.fang/voice_conversion/Retrieval-based-Voice-Conversion-WebUIx/content/Retrieval-based-Voice-Conversion-WebUI/logs/xusong_v2_org_version_multispk_eaysing4/用户1-男_wav_part/0_gt_wavs/5_17.wav
+
+ basename_tmp = os.path.basename(wav_filename)
+ dir_parent = os.path.dirname(os.path.dirname(wav_filename))
+ out_dir = os.path.join(dir_parent, '5_embed256')
+ if(not os.path.exists(out_dir)):
+ os.mkdir(out_dir)
+ print("mkdir out_dir: ",out_dir)
+
+ out_dirname = os.path.join(out_dir, basename_tmp)[:-4] + '.npy'
+ src_para.append(wav_filename)
+ des_para.append(out_dirname)
+ # print('wav_filename:',wav_filename)
+ # print('out_dirname:', out_dirname)
+
+ for idx in range(len(des_para)):
+ process_embed_extra(src_para[idx], des_para[idx])
+ #ThreadPool_process_core(process_embed_extra, src_para, des_para)
+ end_time = time()
+ duration = end_time - start_time
+ print("process finished cost {:.3f} seconds ,".format(duration))
+
+ return
+
+def get_embed_model(gs_embed_model_spk_path,gs_embed_config_spk_path):
+ parser = argparse.ArgumentParser()
+ #root_emb_path = os.path.dirname(__file__)
+ #root_emb_path = '/data/bingxiao.fang/speaker_identify/SpeakerEncoder/'
+ parser.add_argument('--model_path', type=str, default=gs_embed_model_spk_path, required=False)
+ parser.add_argument('--config_path', type=str, default=gs_embed_config_spk_path, required=False)
+ parser.add_argument('--output_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_type', type=str, default="file", required=False) # single_speaker, #multi_speaker
+ parser.add_argument('--speaker_name', type=str, default="default", required=False)
+ parser.add_argument('--num_wavs', type=int, default=20, required=False)
+ parser.add_argument('--num_workers', type=int, default=10, required=False)
+ # parser.add_argument('--output_name', type=str, required=True)
+ parser.add_argument('--mode', type=str, default="all_embs", required=False)
+ parser.add_argument(
+ "--filelist",
+ type=str,
+ default="",
+ help="Input filelist to extract embedding in rvc.",
+ )
+
+ args = parser.parse_args()
+
+ # main(args)
+ #sys.exit(main_filelist_multi(args))
+
+ config = load_config(args.config_path)
+ model = SpeechEmbedding(config, args.model_path)
+
+ return model
+
+def get_embed(wav_filename, embed_npy, model):
+ print("@@@@input wav name :", wav_filename)
+ print("embedding embed_npy: ", embed_npy)
+
+ embedd = model.compute_embedding(wav_filename, 1, 1)
+ output = embedd[0]
+ print("embead shapexx:")#, output)#.size())
+
+ np.save(embed_npy, output)#.detach().cpu().numpy())
+ return
+
+
+def main(args):
+
+ config = load_config(args.config_path)
+ speech_embedding = SpeechEmbedding(config, args.model_path)
+ if (not os.path.exists(args.output_path)):
+ os.mkdir(args.output_path)
+
+ emb_dict = {}
+ # Compute speaker embeddings
+ if args.input_type == "single_file":
+ wav_file = args.input_path
+ embedd = speech_embedding.compute_embedding(wav_file, 1, 1)
+ embedd = embedd[0]
+ emb_dict[args.speaker_name] = embedd
+ print(embedd)
+ else:
+ if args.input_type == "single_speaker":
+ spk_list = [args.speaker_name]
+ elif args.input_type == "multi_speaker":
+ spk_list = os.listdir(args.input_path)
+
+ # executor = ProcessPoolExecutor(max_workers=args.num_workers)
+ for spk_itr, spk_name in enumerate(spk_list):
+ print(f"========== Speaker {spk_itr}/{len(spk_list)}::")
+ if args.input_type == "single_speaker":
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ elif args.input_type == "multi_speaker":
+ #wav_files = glob.glob(os.path.join(args.input_path, spk_name, "*.wav"))
+ wav_files = glob.glob(os.path.join(args.input_path, "*.wav"))
+ print('wav_files:',wav_files)
+ # Skip if no wav available for speaker
+ if len(wav_files) == 0:
+ continue
+
+ # Randomly shuffle and select a sub-list of num_wavs != -1
+ if args.num_wavs != -1:
+ print(f"Selecting {args.num_wavs} random wavs ...")
+ random.shuffle(wav_files)
+ wav_files = wav_files[:args.num_wavs]
+
+ # Compute embeddings for all wav files
+ all_embdds = []
+
+ if 1:
+ for wav_filename in wav_files:
+ basename_tmp = os.path.basename(wav_filename)
+ # dir_parent = os.path.dirname(os.path.dirname(wav_filename))
+ # out_dir = os.path.join(dir_parent, '4_embed256')
+ if (not os.path.exists(out_dir)):
+ os.mkdir(out_dir)
+ # print("mkdir out_dir: ",out_dir)
+
+ out_dirname = os.path.join(out_dir, basename_tmp)[:-4] + '.npy'
+ src_para.append(wav_filename)
+ des_para.append(out_dirname)
+
+ ThreadPool_process_core(process_embed_extra, src_para, des_para)
+ else:
+ for itr, wav_file in enumerate(wav_files):
+ # embedd = executor.submit(speech_embedding.compute_embedding,
+ # wav_file,
+ # itr,
+ # len(wav_files))
+ embedd = speech_embedding.compute_embedding(wav_file, itr, len(wav_files))
+ all_embdds.append((os.path.basename(wav_file), embedd[0]))
+
+ # for basename_tmp, embedd in concurrent.futures.as_completed(all_embdds):
+ for basename_tmp, embedd in all_embdds:
+ print('embedd:',embedd.shape)
+
+ # basename_tmp = os.path.basename(wav_files)
+ out_dirname = os.path.join(args.output_path, basename_tmp)[:-4] + '.npy'
+ print('out_dirname:',out_dirname)
+ np.save(out_dirname, embedd)
+
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model_path', type=str, default="pretrained_model/best_model.pth.tar", required=False)
+ parser.add_argument('--config_path', type=str, default="pretrained_model/config.json", required=False)
+ parser.add_argument('--output_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_path', type=str, default="outputs/", required=False)
+ parser.add_argument('--input_type', type=str, default="file", required=False) # single_speaker, #multi_speaker
+ parser.add_argument('--speaker_name', type=str, default="default", required=False)
+ parser.add_argument('--num_wavs', type=int, default=20, required=False)
+ parser.add_argument('--num_workers', type=int, default=10, required=False)
+ #parser.add_argument('--output_name', type=str, required=True)
+ parser.add_argument('--mode', type=str, default="all_embs", required=False)
+ parser.add_argument(
+ "--filelist",
+ type=str,
+ default="",
+ help="Input filelist to extract embedding in rvc.",
+ )
+
+ args = parser.parse_args()
+
+ # main(args)
+ sys.exit(main_filelist_multi(args))
diff --git a/AIMeiSheng/SpeakerEncoder/limit_threads.py b/AIMeiSheng/SpeakerEncoder/limit_threads.py
new file mode 100644
index 0000000..79ddef7
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/limit_threads.py
@@ -0,0 +1,9 @@
+import os
+
+os.environ["OMP_NUM_THREADS"] = "2" # export OMP_NUM_THREADS=4
+os.environ["OPENBLAS_NUM_THREADS"] = "2" # export OPENBLAS_NUM_THREADS=4
+os.environ["MKL_NUM_THREADS"] = "2" # export MKL_NUM_THREADS=6
+os.environ["VECLIB_MAXIMUM_THREADS"] = "2" # export VECLIB_MAXIMUM_THREADS=4
+os.environ["NUMEXPR_NUM_THREADS"] = "2" # export NUMEXPR_NUM_THREADS=6
+
+print("NUMBER OF THREADS IS LIMITED NOW ...")
diff --git a/AIMeiSheng/SpeakerEncoder/multi_threads_wraper.py b/AIMeiSheng/SpeakerEncoder/multi_threads_wraper.py
new file mode 100644
index 0000000..125d378
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/multi_threads_wraper.py
@@ -0,0 +1,81 @@
+# -*- coding: utf-8 -*-
+"""
+Created on 2024/1/3 14:11
+
+@author: bingxiao fang
+"""
+import threading
+from time import sleep, time
+
+
+
+
+def my_function1(param):
+ # 这里写需要被并发执行的任务
+ print("Thread {} is running with parameter {}. Sleep for 2 seconds.".format(threading.current_thread().name, param))
+ sleep(2)
+ end = time()
+ duration = end - start
+ print("Thread {} finished in {:.3f} seconds".format(threading.current_thread().name, duration))
+
+
+# 定义要执行的任务函数
+def my_function2(param1,param2):
+
+
+ # 模拟耗时操作
+ sum = 0
+ for i in range(10 ):
+ sum += param2
+ # pass
+
+ # end = time()
+ # duration = end - start
+ # print("Thread {} finished in {:.3f} seconds ,sum is : {}".format(threading.current_thread().name, duration,sum))
+ print("Thread {} finished ".format(threading.current_thread().name))
+
+ return [sum,param1] ##可恶意找到输出输入
+
+
+
+
+
+
+# 线程池示例
+def my_function3():
+ return 'Hello, World!'
+
+import concurrent.futures
+def ThreadPool_process_core(func_process,params1,params2,num_threads =8):
+ '''
+ function: 给定函数和输入,就可以给到输出,通过返回值,可以确定结果是哪个
+ :param func_process:
+ :param params1:
+ :param params2:
+ :return:
+ '''
+ #num_threads = 5 # 设置线程数量为5
+ futures=[]
+ with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
+ for idx in range(len(params1)):
+ para1 = params1[idx]
+ para2 = params2[idx]
+ ret = executor.submit(func_process,para1,para2)
+ futures.append(ret)
+ cnt=0
+ for future in concurrent.futures.as_completed(futures):
+ cnt += 1
+ #print(f"process finised {cnt}")
+ #print(future.result())
+
+
+def ThreadPool_main_process():
+ params1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] # 定义参数列表
+ params2 = [11, 21, 3, 4, 5, 6, 7, 8, 9]
+ ThreadPool_process_core(my_function2, params1,params2)
+
+
+
+if __name__ == "__main__":
+
+ ThreadPool_main_process()
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/batch_folder.sh b/AIMeiSheng/SpeakerEncoder/scripts/batch_folder.sh
new file mode 100644
index 0000000..b4bd394
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/batch_folder.sh
@@ -0,0 +1,18 @@
+
+#!/bin/bash
+
+
+input_path="path_to_wavs_folder"
+input_type="single_speaker"
+num_wavs=-1 # -1 for computing embeddings of all wav files
+num_workers=8
+output_name="output"
+speaker_name="speaker_name"
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name" \
+ --speaker_name="$speaker_name"
+
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/multispk_comvoiceDE.sh b/AIMeiSheng/SpeakerEncoder/scripts/multispk_comvoiceDE.sh
new file mode 100644
index 0000000..1cc8083
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/multispk_comvoiceDE.sh
@@ -0,0 +1,16 @@
+#!/bin/bash
+
+
+input_path="/raid/hhemati/Datasets/Speech/TTS/CommonVoice/de/wavs/"
+input_type="multi_speaker"
+num_wavs=-1
+num_workers=10
+output_name="comvoiceDE"
+
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name"
+
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/multispk_vctk.sh b/AIMeiSheng/SpeakerEncoder/scripts/multispk_vctk.sh
new file mode 100644
index 0000000..29a762a
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/multispk_vctk.sh
@@ -0,0 +1,16 @@
+#!/bin/bash
+
+
+input_path="/raid/hhemati/Datasets/Speech/TTS/English/VCTK-Corpus/wavs/"
+input_type="multi_speaker"
+num_wavs=-1
+num_workers=8
+output_name="vctk"
+
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name"
+
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/singlespk_css10de.sh b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_css10de.sh
new file mode 100644
index 0000000..ff4f94c
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_css10de.sh
@@ -0,0 +1,19 @@
+
+#!/bin/bash
+
+
+input_path="/raid/hhemati/Datasets/Speech/TTS/CSS10/GermanSingleSpeaker/de/*/"
+input_type="single_speaker"
+num_wavs=-1
+num_workers=8
+output_name="gss"
+speaker_name="gss"
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name" \
+ --speaker_name="$speaker_name"
+
+
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/singlespk_lj.sh b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_lj.sh
new file mode 100644
index 0000000..ae187ab
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_lj.sh
@@ -0,0 +1,18 @@
+
+#!/bin/bash
+
+
+input_path="/raid/hhemati/Datasets/Speech/TTS/English/LJSpeech-1.1/wavs/"
+input_type="single_speaker"
+num_wavs=-1
+num_workers=8
+output_name="lj"
+speaker_name="lj"
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name" \
+ --speaker_name="$speaker_name"
+
diff --git a/AIMeiSheng/SpeakerEncoder/scripts/singlespk_miriam.sh b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_miriam.sh
new file mode 100644
index 0000000..59e2590
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/scripts/singlespk_miriam.sh
@@ -0,0 +1,18 @@
+
+#!/bin/bash
+
+
+input_path="/raid/hhemati/Datasets/Speech/TTS/VocallyYours/MiriamMeckel_Split/audios"
+input_type="single_speaker"
+num_wavs=-1
+num_workers=8
+output_name="miriam"
+speaker_name="miriam"
+
+python compute_embedding.py --input_path="$input_path"\
+ --input_type="$input_type"\
+ --num_wavs="$num_wavs"\
+ --num_workers="$num_workers"\
+ --output_name="$output_name" \
+ --speaker_name="$speaker_name"
+
diff --git a/AIMeiSheng/SpeakerEncoder/speaker_encoder/__init__.py b/AIMeiSheng/SpeakerEncoder/speaker_encoder/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/AIMeiSheng/SpeakerEncoder/speaker_encoder/audio.py b/AIMeiSheng/SpeakerEncoder/speaker_encoder/audio.py
new file mode 100644
index 0000000..3a77e9c
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/speaker_encoder/audio.py
@@ -0,0 +1,392 @@
+import librosa
+import soundfile as sf
+import numpy as np
+import scipy.io.wavfile
+import scipy.signal
+import pyworld as pw
+
+
+# pylint: disable=attribute-defined-outside-init
+class StandardScaler():
+
+ def set_stats(self, mean, scale):
+ self.mean_ = mean
+ self.scale_ = scale
+
+ def reset_stats(self):
+ delattr(self, 'mean_')
+ delattr(self, 'scale_')
+
+ def transform(self, X):
+ X = np.asarray(X)
+ X -= self.mean_
+ X /= self.scale_
+ return X
+
+ def inverse_transform(self, X):
+ X = np.asarray(X)
+ X *= self.scale_
+ X += self.mean_
+ return X
+
+
+#pylint: disable=too-many-public-methods
+class AudioProcessor(object):
+ def __init__(self,
+ sample_rate=None,
+ num_mels=None,
+ min_level_db=None,
+ frame_shift_ms=None,
+ frame_length_ms=None,
+ hop_length=None,
+ win_length=None,
+ ref_level_db=None,
+ fft_size=1024,
+ power=None,
+ preemphasis=0.0,
+ signal_norm=None,
+ symmetric_norm=None,
+ max_norm=None,
+ mel_fmin=None,
+ mel_fmax=None,
+ spec_gain=20,
+ stft_pad_mode='reflect',
+ clip_norm=True,
+ griffin_lim_iters=None,
+ do_trim_silence=False,
+ trim_db=60,
+ do_sound_norm=False,
+ stats_path=None,
+ **_):
+
+ print(" > Setting up Audio Processor...")
+ # setup class attributed
+ self.sample_rate = sample_rate
+ self.num_mels = num_mels
+ self.min_level_db = min_level_db or 0
+ self.frame_shift_ms = frame_shift_ms
+ self.frame_length_ms = frame_length_ms
+ self.ref_level_db = ref_level_db
+ self.fft_size = fft_size
+ self.power = power
+ self.preemphasis = preemphasis
+ self.griffin_lim_iters = griffin_lim_iters
+ self.signal_norm = signal_norm
+ self.symmetric_norm = symmetric_norm
+ self.mel_fmin = mel_fmin or 0
+ self.mel_fmax = mel_fmax
+ self.spec_gain = float(spec_gain)
+ self.stft_pad_mode = stft_pad_mode
+ self.max_norm = 1.0 if max_norm is None else float(max_norm)
+ self.clip_norm = clip_norm
+ self.do_trim_silence = do_trim_silence
+ self.trim_db = trim_db
+ self.do_sound_norm = do_sound_norm
+ self.stats_path = stats_path
+ # setup stft parameters
+ if hop_length is None:
+ # compute stft parameters from given time values
+ self.hop_length, self.win_length = self._stft_parameters()
+ else:
+ # use stft parameters from config file
+ self.hop_length = hop_length
+ self.win_length = win_length
+ assert min_level_db != 0.0, " [!] min_level_db is 0"
+ assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
+ members = vars(self)
+ for key, value in members.items():
+ print(" | > {}:{}".format(key, value))
+ # create spectrogram utils
+ self.mel_basis = self._build_mel_basis()
+ self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
+ # setup scaler
+ if stats_path:
+ mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
+ self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
+ self.signal_norm = True
+ self.max_norm = None
+ self.clip_norm = None
+ self.symmetric_norm = None
+
+ ### setting up the parameters ###
+ def _build_mel_basis(self, ):
+ if self.mel_fmax is not None:
+ assert self.mel_fmax <= self.sample_rate // 2
+ return librosa.filters.mel(
+ self.sample_rate,
+ self.fft_size,
+ n_mels=self.num_mels,
+ fmin=self.mel_fmin,
+ fmax=self.mel_fmax)
+
+ def _stft_parameters(self, ):
+ """Compute necessary stft parameters with given time values"""
+ factor = self.frame_length_ms / self.frame_shift_ms
+ assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
+ hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
+ win_length = int(hop_length * factor)
+ return hop_length, win_length
+
+ ### normalization ###
+ def _normalize(self, S):
+ """Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]"""
+ #pylint: disable=no-else-return
+ S = S.copy()
+ if self.signal_norm:
+ # mean-var scaling
+ if hasattr(self, 'mel_scaler'):
+ if S.shape[0] == self.num_mels:
+ return self.mel_scaler.transform(S.T).T
+ elif S.shape[0] == self.fft_size / 2:
+ return self.linear_scaler.transform(S.T).T
+ else:
+ raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
+ # range normalization
+ S -= self.ref_level_db # discard certain range of DB assuming it is air noise
+ S_norm = ((S - self.min_level_db) / (-self.min_level_db))
+ if self.symmetric_norm:
+ S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
+ if self.clip_norm:
+ S_norm = np.clip(S_norm, -self.max_norm, self.max_norm) # pylint: disable=invalid-unary-operand-type
+ return S_norm
+ else:
+ S_norm = self.max_norm * S_norm
+ if self.clip_norm:
+ S_norm = np.clip(S_norm, 0, self.max_norm)
+ return S_norm
+ else:
+ return S
+
+ def _denormalize(self, S):
+ """denormalize values"""
+ #pylint: disable=no-else-return
+ S_denorm = S.copy()
+ if self.signal_norm:
+ # mean-var scaling
+ if hasattr(self, 'mel_scaler'):
+ if S_denorm.shape[0] == self.num_mels:
+ return self.mel_scaler.inverse_transform(S_denorm.T).T
+ elif S_denorm.shape[0] == self.fft_size / 2:
+ return self.linear_scaler.inverse_transform(S_denorm.T).T
+ else:
+ raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
+ if self.symmetric_norm:
+ if self.clip_norm:
+ S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm) #pylint: disable=invalid-unary-operand-type
+ S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
+ return S_denorm + self.ref_level_db
+ else:
+ if self.clip_norm:
+ S_denorm = np.clip(S_denorm, 0, self.max_norm)
+ S_denorm = (S_denorm * -self.min_level_db /
+ self.max_norm) + self.min_level_db
+ return S_denorm + self.ref_level_db
+ else:
+ return S_denorm
+
+ ### Mean-STD scaling ###
+ def load_stats(self, stats_path):
+ stats = np.load(stats_path, allow_pickle=True).item() #pylint: disable=unexpected-keyword-arg
+ mel_mean = stats['mel_mean']
+ mel_std = stats['mel_std']
+ linear_mean = stats['linear_mean']
+ linear_std = stats['linear_std']
+ stats_config = stats['audio_config']
+ # check all audio parameters used for computing stats
+ skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power']
+ for key in stats_config.keys():
+ if key in skip_parameters:
+ continue
+ if key not in ['sample_rate', 'trim_db']:
+ assert stats_config[key] == self.__dict__[key],\
+ f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
+ return mel_mean, mel_std, linear_mean, linear_std, stats_config
+
+ # pylint: disable=attribute-defined-outside-init
+ def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std):
+ self.mel_scaler = StandardScaler()
+ self.mel_scaler.set_stats(mel_mean, mel_std)
+ self.linear_scaler = StandardScaler()
+ self.linear_scaler.set_stats(linear_mean, linear_std)
+
+ ### DB and AMP conversion ###
+ # pylint: disable=no-self-use
+ def _amp_to_db(self, x):
+ return self.spec_gain * np.log10(np.maximum(1e-5, x))
+
+ # pylint: disable=no-self-use
+ def _db_to_amp(self, x):
+ return np.power(10.0, x / self.spec_gain)
+
+ ### Preemphasis ###
+ def apply_preemphasis(self, x):
+ if self.preemphasis == 0:
+ raise RuntimeError(" [!] Preemphasis is set 0.0.")
+ return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
+
+ def apply_inv_preemphasis(self, x):
+ if self.preemphasis == 0:
+ raise RuntimeError(" [!] Preemphasis is set 0.0.")
+ return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
+
+ ### SPECTROGRAMs ###
+ def _linear_to_mel(self, spectrogram):
+ return np.dot(self.mel_basis, spectrogram)
+
+ def _mel_to_linear(self, mel_spec):
+ return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))
+
+ def spectrogram(self, y):
+ if self.preemphasis != 0:
+ D = self._stft(self.apply_preemphasis(y))
+ else:
+ D = self._stft(y)
+ S = self._amp_to_db(np.abs(D))
+ return self._normalize(S)
+
+ def melspectrogram(self, y):
+ if self.preemphasis != 0:
+ D = self._stft(self.apply_preemphasis(y))
+ else:
+ D = self._stft(y)
+ S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
+ return self._normalize(S)
+
+ def inv_spectrogram(self, spectrogram):
+ """Converts spectrogram to waveform using librosa"""
+ S = self._denormalize(spectrogram)
+ S = self._db_to_amp(S)
+ # Reconstruct phase
+ if self.preemphasis != 0:
+ return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
+ return self._griffin_lim(S**self.power)
+
+ def inv_melspectrogram(self, mel_spectrogram):
+ '''Converts melspectrogram to waveform using librosa'''
+ D = self._denormalize(mel_spectrogram)
+ S = self._db_to_amp(D)
+ S = self._mel_to_linear(S) # Convert back to linear
+ if self.preemphasis != 0:
+ return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
+ return self._griffin_lim(S**self.power)
+
+ def out_linear_to_mel(self, linear_spec):
+ S = self._denormalize(linear_spec)
+ S = self._db_to_amp(S)
+ S = self._linear_to_mel(np.abs(S))
+ S = self._amp_to_db(S)
+ mel = self._normalize(S)
+ return mel
+
+ ### STFT and ISTFT ###
+ def _stft(self, y):
+ return librosa.stft(
+ y=y,
+ n_fft=self.fft_size,
+ hop_length=self.hop_length,
+ win_length=self.win_length,
+ pad_mode=self.stft_pad_mode,
+ )
+
+ def _istft(self, y):
+ return librosa.istft(
+ y, hop_length=self.hop_length, win_length=self.win_length)
+
+ def _griffin_lim(self, S):
+ angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
+ S_complex = np.abs(S).astype(np.complex)
+ y = self._istft(S_complex * angles)
+ for _ in range(self.griffin_lim_iters):
+ angles = np.exp(1j * np.angle(self._stft(y)))
+ y = self._istft(S_complex * angles)
+ return y
+
+ def compute_stft_paddings(self, x, pad_sides=1):
+ '''compute right padding (final frame) or both sides padding (first and final frames)
+ '''
+ assert pad_sides in (1, 2)
+ pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
+ if pad_sides == 1:
+ return 0, pad
+ return pad // 2, pad // 2 + pad % 2
+
+ ### Compute F0 ###
+ def compute_f0(self, x):
+ f0, t = pw.dio(
+ x.astype(np.double),
+ fs=self.sample_rate,
+ f0_ceil=self.mel_fmax,
+ frame_period=1000 * self.hop_length / self.sample_rate,
+ )
+ f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
+ return f0
+
+ ### Audio Processing ###
+ def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
+ window_length = int(self.sample_rate * min_silence_sec)
+ hop_length = int(window_length / 4)
+ threshold = self._db_to_amp(threshold_db)
+ for x in range(hop_length, len(wav) - window_length, hop_length):
+ if np.max(wav[x:x + window_length]) < threshold:
+ return x + hop_length
+ return len(wav)
+
+ def trim_silence(self, wav):
+ """ Trim silent parts with a threshold and 0.01 sec margin """
+ margin = int(self.sample_rate * 0.01)
+ wav = wav[margin:-margin]
+ return librosa.effects.trim(
+ wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
+
+ @staticmethod
+ def sound_norm(x):
+ return x / abs(x).max() * 0.9
+
+ ### save and load ###
+ def load_wav(self, filename, sr=None):
+ if sr is None:
+ x, sr = sf.read(filename)
+ assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr)
+ else:
+ x, sr = librosa.load(filename, sr=sr)
+ if self.do_trim_silence:
+ try:
+ x = self.trim_silence(x)
+ except ValueError:
+ print(f' [!] File cannot be trimmed for silence - {filename}')
+ if self.do_sound_norm:
+ x = self.sound_norm(x)
+ return x
+
+ def save_wav(self, wav, path):
+ wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
+ scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
+
+ @staticmethod
+ def mulaw_encode(wav, qc):
+ mu = 2 ** qc - 1
+ # wav_abs = np.minimum(np.abs(wav), 1.0)
+ signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
+ # Quantize signal to the specified number of levels.
+ signal = (signal + 1) / 2 * mu + 0.5
+ return np.floor(signal,)
+
+ @staticmethod
+ def mulaw_decode(wav, qc):
+ """Recovers waveform from quantized values."""
+ mu = 2 ** qc - 1
+ x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
+ return x
+
+
+ @staticmethod
+ def encode_16bits(x):
+ return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
+
+ @staticmethod
+ def quantize(x, bits):
+ return (x + 1.) * (2**bits - 1) / 2
+
+ @staticmethod
+ def dequantize(x, bits):
+ return 2 * x / (2**bits - 1) - 1
diff --git a/AIMeiSheng/SpeakerEncoder/speaker_encoder/io.py b/AIMeiSheng/SpeakerEncoder/speaker_encoder/io.py
new file mode 100644
index 0000000..5188ef9
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/speaker_encoder/io.py
@@ -0,0 +1,35 @@
+import os
+import re
+import json
+
+
+class AttrDict(dict):
+ """A custom dict which converts dict keys
+ to class attributes"""
+ def __init__(self, *args, **kwargs):
+ super(AttrDict, self).__init__(*args, **kwargs)
+ self.__dict__ = self
+
+
+def load_config(config_path: str) -> AttrDict:
+ """Load config files and discard comments
+ Args:
+ config_path (str): path to config file.
+ """
+ config = AttrDict()
+
+ ext = os.path.splitext(config_path)[1]
+ if ext in (".yml", ".yaml"):
+ with open(config_path, "r") as f:
+ data = yaml.safe_load(f)
+ else:
+ # fallback to json
+ with open(config_path, "r") as f:
+ input_str = f.read()
+ # handle comments
+ input_str = re.sub(r'\\\n', '', input_str)
+ input_str = re.sub(r'//.*\n', '\n', input_str)
+ data = json.loads(input_str)
+
+ config.update(data)
+ return config
\ No newline at end of file
diff --git a/AIMeiSheng/SpeakerEncoder/speaker_encoder/model.py b/AIMeiSheng/SpeakerEncoder/speaker_encoder/model.py
new file mode 100644
index 0000000..fa241b0
--- /dev/null
+++ b/AIMeiSheng/SpeakerEncoder/speaker_encoder/model.py
@@ -0,0 +1,112 @@
+import torch
+from torch import nn
+
+
+class LSTMWithProjection(nn.Module):
+ def __init__(self, input_size, hidden_size, proj_size):
+ super().__init__()
+ self.input_size = input_size
+ self.hidden_size = hidden_size
+ self.proj_size = proj_size
+ self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
+ self.linear = nn.Linear(hidden_size, proj_size, bias=False)
+
+ def forward(self, x):
+ self.lstm.flatten_parameters()
+ o, (_, _) = self.lstm(x)
+ return self.linear(o)
+
+class LSTMWithoutProjection(nn.Module):
+ def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers):
+ super().__init__()
+ self.lstm = nn.LSTM(input_size=input_dim,
+ hidden_size=lstm_dim,
+ num_layers=num_lstm_layers,
+ batch_first=True)
+ self.linear = nn.Linear(lstm_dim, proj_dim, bias=True)
+ self.relu = nn.ReLU()
+ def forward(self, x):
+ _, (hidden, _) = self.lstm(x)
+ return self.relu(self.linear(hidden[-1]))
+
+class SpeakerEncoder(nn.Module):
+ def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3, use_lstm_with_projection=True):
+ super().__init__()
+ self.use_lstm_with_projection = use_lstm_with_projection
+ layers = []
+ # choise LSTM layer
+ if use_lstm_with_projection:
+ layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim))
+ for _ in range(num_lstm_layers - 1):
+ layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim))
+ self.layers = nn.Sequential(*layers)
+ else:
+ self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers)
+
+ self._init_layers()
+
+ def _init_layers(self):
+ for name, param in self.layers.named_parameters():
+ if "bias" in name:
+ nn.init.constant_(param, 0.0)
+ elif "weight" in name:
+ nn.init.xavier_normal_(param)
+
+ def forward(self, x):
+ # TODO: implement state passing for lstms
+ d = self.layers(x)
+ if self.use_lstm_with_projection:
+ d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
+ else:
+ d = torch.nn.functional.normalize(d, p=2, dim=1)
+ return d
+
+ @torch.no_grad()
+ def inference(self, x):
+ d = self.layers.forward(x)
+ if self.use_lstm_with_projection:
+ d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
+ else:
+ d = torch.nn.functional.normalize(d, p=2, dim=1)
+ return d
+
+ def compute_embedding(self, x, num_frames=160, overlap=0.5):
+ """
+ Generate embeddings for a batch of utterances
+ x: 1xTxD
+ """
+ num_overlap = int(num_frames * overlap)
+ max_len = x.shape[1]
+ embed = None
+ cur_iter = 0
+ for offset in range(0, max_len, num_frames - num_overlap):
+ cur_iter += 1
+ end_offset = min(x.shape[1], offset + num_frames)
+ frames = x[:, offset:end_offset]
+ if embed is None:
+ embed = self.inference(frames)
+ else:
+ embed += self.inference(frames)
+ return embed / cur_iter
+
+ def batch_compute_embedding(self, x, seq_lens, num_frames=160, overlap=0.5):
+ """
+ Generate embeddings for a batch of utterances
+ x: BxTxD
+ """
+ num_overlap = num_frames * overlap
+ max_len = x.shape[1]
+ embed = None
+ num_iters = seq_lens / (num_frames - num_overlap)
+ cur_iter = 0
+ for offset in range(0, max_len, num_frames - num_overlap):
+ cur_iter += 1
+ end_offset = min(x.shape[1], offset + num_frames)
+ frames = x[:, offset:end_offset]
+ if embed is None:
+ embed = self.inference(frames)
+ else:
+ embed[cur_iter <= num_iters, :] += self.inference(
+ frames[cur_iter <= num_iters, :, :]
+ )
+ return embed / num_iters
\ No newline at end of file
diff --git a/AIMeiSheng/cos_similar_ui_zoom.py b/AIMeiSheng/cos_similar_ui_zoom.py
new file mode 100644
index 0000000..87b74f5
--- /dev/null
+++ b/AIMeiSheng/cos_similar_ui_zoom.py
@@ -0,0 +1,54 @@
+import json
+import shutil
+
+import gradio as gr
+
+import zipfile
+import os
+import sys
+import ffmpeg
+
+
+import gradio as gr
+import librosa,soundfile
+#sys.path.append('./AIMeiSheng/SpeakerEncoder')
+from SpeakerEncoder.compute_embedding_svc_multi_test import get_embed, get_embed_model
+from SpeakerEncoder.cal_cos_distance_folder import load_and_cal_distance
+from docker_demo.common import gs_embed_model_spk_path,gs_embed_config_spk_path
+
+class cos_similar():
+ def __init__(self,):
+ self.embed_model = self.load_model()
+ self.embed_npy = 'wav1.npy'
+ self.svc_embed_npy = 'wav2.npy'
+
+ def get_cos_similar_spkenc(self, wav1, wav2):
+ get_embed(wav1, self.embed_npy, self.embed_model)
+ get_embed(wav2, self.svc_embed_npy, self.embed_model)
+
+ similar = load_and_cal_distance(self.embed_npy, self.svc_embed_npy)
+ print("target_npy:", self.embed_npy, "svc_npy:", self.svc_embed_npy)
+ print("######similar:", similar)
+ return similar
+
+ def get_spk_embed(self,wav_in, embed_npy):
+ get_embed(wav_in, embed_npy, self.embed_model)
+ return
+
+ def get_cos_similar_raw(self, wav1, wav2):
+ get_embed(wav1, self.embed_npy, self.embed_model)
+ get_embed(wav2, self.svc_embed_npy, self.embed_model)
+
+ similar = load_and_cal_distance(self.embed_npy, self.svc_embed_npy)
+ print("target_npy:", self.embed_npy, "svc_npy:", self.svc_embed_npy)
+ print("######similar:", similar)
+ return similar
+
+ def load_model(self):
+ embed_model = get_embed_model(gs_embed_model_spk_path, gs_embed_config_spk_path)
+ return embed_model
+
+
+
+
+
diff --git a/AIMeiSheng/docker_demo/Dockerfile b/AIMeiSheng/docker_demo/Dockerfile
index dd9f0dd..6b9921f 100644
--- a/AIMeiSheng/docker_demo/Dockerfile
+++ b/AIMeiSheng/docker_demo/Dockerfile
@@ -1,25 +1,25 @@
# 系统版本 CUDA Version 11.8.0
# NAME="CentOS Linux" VERSION="7 (Core)"
# FROM starmaker.tencentcloudcr.com/starmaker/av/av:1.1
# 基础镜像, python3.9,cuda118,centos7,外加ffmpeg
#FROM starmaker.tencentcloudcr.com/starmaker/av/av_base:1.0
FROM av_base_test:1.0
RUN source /etc/profile && sed -i 's|mirrorlist=|#mirrorlist=|g' /etc/yum.repos.d/CentOS-Base.repo && sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Base.repo && yum clean all && yum install -y unzip && yum install -y libsndfile && yum install -y libsamplerate libsamplerate-devel
-RUN source /etc/profile && pip3 install librosa && pip3 install gradio && pip3 install torch==2.1.2 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
+RUN source /etc/profile && pip3 install librosa==0.9.1 && pip3 install gradio && pip3 install torch==2.1.2 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
RUN source /etc/profile && pip3 install urllib3==1.26.15 && pip3 install coscmd && coscmd config -a AKIDoQmshFWXGitnQmrfCTYNwEExPaU6RVHm -s F9n9E2ZonWy93f04qMaYFfogHadPt62h -b log-sg-1256122840 -r ap-singapore
RUN source /etc/profile && pip3 install asteroid-filterbanks
RUN source /etc/profile && pip3 install praat-parselmouth==0.4.3
RUN source /etc/profile && pip3 install pyworld
RUN source /etc/profile && pip3 install faiss-cpu
RUN source /etc/profile && pip3 install torchcrepe
RUN source /etc/profile && pip3 install thop
RUN source /etc/profile && pip3 install ffmpeg-python
RUN source /etc/profile && pip3 install fairseq
RUN source /etc/profile && pip3 install redis==4.5.0
WORKDIR /data/code
-CMD ["/bin/bash", "-c", "source /etc/profile; export PYTHONPATH=/data/code; cd /data/code/AIMeiSheng/docker_demo; python3 offline_server.py"]
\ No newline at end of file
+CMD ["/bin/bash", "-c", "source /etc/profile; export PYTHONPATH=/data/code; cd /data/code/AIMeiSheng/docker_demo; python3 offline_server.py"]
diff --git a/AIMeiSheng/docker_demo/common.py b/AIMeiSheng/docker_demo/common.py
index ca42a27..7602d60 100644
--- a/AIMeiSheng/docker_demo/common.py
+++ b/AIMeiSheng/docker_demo/common.py
@@ -1,105 +1,108 @@
import os
import time
# import logging
import urllib, urllib.request
# 测试/正式环境
gs_prod = True
gs_tmp_dir = "/tmp/ai_meisheng_tmp"
gs_model_dir = "/tmp/ai_meisheng_models"
gs_resource_cache_dir = "/tmp/ai_meisheng_resource_cache"
-gs_svc_model_path = os.path.join(gs_model_dir,
- "weights/xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth")
gs_embed_model_path = os.path.join(gs_model_dir, "RawNet3/models/weights/model.pt")
+gs_svc_model_path = os.path.join(gs_model_dir,
+ "weights/xusong_v2_org_version_alldata_embed_spkenx200x_vocal_e22_s95040.pth")
gs_hubert_model_path = os.path.join(gs_model_dir, "hubert.pt")
gs_rmvpe_model_path = os.path.join(gs_model_dir, "rmvpe.pt")
+gs_embed_model_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/best_model.pth.tar")
+gs_embed_config_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/config.json")
# errcode
+
gs_err_code_success = 0
gs_err_code_download_vocal = 100
gs_err_code_download_svc_url = 101
gs_err_code_svc_process = 102
gs_err_code_transcode = 103
gs_err_code_volume_adjust = 104
gs_err_code_upload = 105
gs_err_code_params = 106
gs_err_code_pending = 107
gs_err_code_target_silence = 108
gs_err_code_too_many_connections = 429
gs_redis_conf = {
"host": "av-credis.starmaker.co",
"port": 6379,
"pwd": "lKoWEhz%jxTO",
}
gs_server_redis_conf = {
"producer": "test_ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "test_ai_meisheng_key_", # 存储结果情况
}
if gs_prod:
gs_server_redis_conf = {
"producer": "ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "ai_meisheng_key_", # 存储结果情况
}
def download2disk(url, dst_path):
try:
urllib.request.urlretrieve(url, dst_path)
return os.path.exists(dst_path)
except Exception as ex:
print(f"download url={url} error", ex)
return False
def exec_cmd(cmd):
# gs_logger.info(cmd)
print(cmd)
ret = os.system(cmd)
if ret != 0:
return False
return True
def exec_cmd_and_result(cmd):
r = os.popen(cmd)
text = r.read()
r.close()
return text
def upload_file2cos(key, file_path, region='ap-singapore', bucket_name='av-audit-sync-sg-1256122840'):
"""
将文件上传到cos
:param key: 桶上的具体地址
:param file_path: 本地文件地址
:param region: 区域
:param bucket_name: 桶地址
:return:
"""
gs_coscmd = "coscmd"
gs_coscmd_conf = "~/.cos.conf"
cmd = "{} -c {} -r {} -b {} upload {} {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, file_path, key)
if exec_cmd(cmd):
cmd = "{} -c {} -r {} -b {} info {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, key) \
+ "| grep Content-Length |awk \'{print $2}\'"
res_str = exec_cmd_and_result(cmd)
# logging.info("{},res={}".format(key, res_str))
size = float(res_str)
if size > 0:
return True
return False
return False
def check_input(input_data):
key_list = ["record_song_url", "target_url", "start", "end", "vocal_loudness", "female_recording_url",
"male_recording_url"]
for key in key_list:
if key not in input_data.keys():
return False
return True
diff --git a/AIMeiSheng/docker_demo/svc_online.py b/AIMeiSheng/docker_demo/svc_online.py
index e910f5f..a52ab24 100644
--- a/AIMeiSheng/docker_demo/svc_online.py
+++ b/AIMeiSheng/docker_demo/svc_online.py
@@ -1,188 +1,190 @@
# -*- coding: UTF-8 -*-
"""
SVC的核心处理逻辑
"""
import os
import time
import socket
import shutil
import hashlib
from AIMeiSheng.meisheng_svc_final import load_model, process_svc_online
+from AIMeiSheng.cos_similar_ui_zoom import cos_similar
from AIMeiSheng.meisheng_env_preparex import meisheng_env_prepare
from AIMeiSheng.voice_classification.online.voice_class_online_fang import VoiceClass, download_volume_balanced
from AIMeiSheng.docker_demo.common import *
import logging
hostname = socket.gethostname()
log_file_name = f"{os.path.dirname(os.path.abspath(__file__))}/av_meisheng_{hostname}.log"
# 设置logger
svc_offline_logger = logging.getLogger("svc_offline")
file_handler = logging.FileHandler(log_file_name)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S')
file_handler.setFormatter(formatter)
if gs_prod:
svc_offline_logger.addHandler(file_handler)
if os.path.exists(gs_tmp_dir):
shutil.rmtree(gs_tmp_dir)
os.makedirs(gs_model_dir, exist_ok=True)
os.makedirs(gs_resource_cache_dir, exist_ok=True)
# 预设参数
gs_gender_models_url = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/hub/voice_classification/models.zip"
gs_volume_bin_url = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/dataset/AIMeiSheng/ebur128_tool"
class GSWorkerAttr:
def __init__(self, input_data):
# 取出输入资源
vocal_url = input_data["record_song_url"]
target_url = input_data["target_url"]
start = input_data["start"] # 单位是ms
end = input_data["end"] # 单位是ms
vocal_loudness = input_data["vocal_loudness"]
female_recording_url = input_data["female_recording_url"]
male_recording_url = input_data["male_recording_url"]
self.distinct_id = hashlib.md5(vocal_url.encode()).hexdigest()
self.tmp_dir = os.path.join(gs_tmp_dir, self.distinct_id)
if os.path.exists(self.tmp_dir):
shutil.rmtree(self.tmp_dir)
os.makedirs(self.tmp_dir)
self.vocal_url = vocal_url
self.target_url = target_url
ext = vocal_url.split(".")[-1]
self.vocal_path = os.path.join(self.tmp_dir, self.distinct_id + f"_in.{ext}")
self.target_wav_path = os.path.join(self.tmp_dir, self.distinct_id + "_out.wav")
self.target_wav_ad_path = os.path.join(self.tmp_dir, self.distinct_id + "_out_ad.wav")
self.target_path = os.path.join(self.tmp_dir, self.distinct_id + "_out.m4a")
self.female_svc_source_url = female_recording_url
self.male_svc_source_url = male_recording_url
ext = female_recording_url.split(".")[-1]
self.female_svc_source_path = os.path.join(gs_resource_cache_dir,
hashlib.md5(female_recording_url.encode()).hexdigest() + "." + ext)
ext = male_recording_url.split(".")[-1]
self.male_svc_source_path = os.path.join(gs_resource_cache_dir,
hashlib.md5(male_recording_url.encode()).hexdigest() + "." + ext)
self.st_tm = start
self.ed_tm = end
self.target_loudness = vocal_loudness
def log_info_name(self):
return f"d_id={self.distinct_id}, vocal_url={self.vocal_url}"
def rm_cache(self):
if os.path.exists(self.tmp_dir):
shutil.rmtree(self.tmp_dir)
def init_gender_model():
"""
下载模型
:return:
"""
dst_model_dir = os.path.join(gs_model_dir, "voice_classification")
if not os.path.exists(dst_model_dir):
dst_zip_path = os.path.join(gs_model_dir, "models.zip")
if not download2disk(gs_gender_models_url, dst_zip_path):
svc_offline_logger.fatal(f"download gender_model err={gs_gender_models_url}")
cmd = f"cd {gs_model_dir}; unzip {dst_zip_path}; mv models voice_classification; rm -f {dst_zip_path}"
os.system(cmd)
if not os.path.exists(dst_model_dir):
svc_offline_logger.fatal(f"unzip {dst_zip_path} err")
music_voice_pure_model = os.path.join(dst_model_dir, "voice_005_rec_v5.pth")
music_voice_no_pure_model = os.path.join(dst_model_dir, "voice_10_v5.pth")
gender_pure_model = os.path.join(dst_model_dir, "gender_8k_ratev5_v6_adam.pth")
gender_no_pure_model = os.path.join(dst_model_dir, "gender_8k_v6_adam.pth")
vc = VoiceClass(music_voice_pure_model, music_voice_no_pure_model, gender_pure_model, gender_no_pure_model)
return vc
def init_svc_model():
meisheng_env_prepare(logging, gs_model_dir)
embed_model, hubert_model = load_model()
- return embed_model, hubert_model
+ cs_sim = cos_similar()
+ return embed_model, hubert_model,cs_sim
def download_volume_adjustment():
"""
下载音量调整工具
:return:
"""
volume_bin_path = os.path.join(gs_model_dir, "ebur128_tool")
if not os.path.exists(volume_bin_path):
if not download2disk(gs_volume_bin_url, volume_bin_path):
svc_offline_logger.fatal(f"download volume_bin err={gs_volume_bin_url}")
os.system(f"chmod +x {volume_bin_path}")
def volume_adjustment(wav_path, target_loudness, out_path):
"""
音量调整
:param wav_path:
:param target_loudness:
:param out_path:
:return:
"""
volume_bin_path = os.path.join(gs_model_dir, "ebur128_tool")
cmd = f"{volume_bin_path} {wav_path} {target_loudness} {out_path}"
os.system(cmd)
class SVCOnline:
def __init__(self):
st = time.time()
self.gender_model = init_gender_model()
- self.embed_model, self.hubert_model = init_svc_model()
+ self.embed_model, self.hubert_model, self.cs_sim = init_svc_model()
download_volume_adjustment()
download_volume_balanced()
svc_offline_logger.info(f"svc init finished, sp = {time.time() - st}")
def gender_process(self, worker_attr):
st = time.time()
gender, female_rate, is_pure = self.gender_model.process(worker_attr.vocal_path)
svc_offline_logger.info(
f"{worker_attr.vocal_url}, gender={gender}, female_rate={female_rate}, is_pure={is_pure}, "
f"gender_process sp = {time.time() - st}")
if gender == 0:
gender = 'female'
elif gender == 1:
gender = 'male'
elif female_rate > 0.5:
gender = 'female'
else:
gender = 'male'
svc_offline_logger.info(f"{worker_attr.vocal_url}, modified gender={gender}")
# err = gs_err_code_success
# if female_rate == -1:
# err = gs_err_code_target_silence
return gender, gs_err_code_success
def process(self, worker_attr):
gender, err = self.gender_process(worker_attr)
if err != gs_err_code_success:
return gender, err
song_path = worker_attr.female_svc_source_path
if gender == "male":
song_path = worker_attr.male_svc_source_path
params = {'gender': gender, 'tst': worker_attr.st_tm, "tnd": worker_attr.ed_tm, 'delay': 0, 'song_path': None}
st = time.time()
err_code = process_svc_online(song_path, worker_attr.vocal_path, worker_attr.target_wav_path, self.embed_model,
- self.hubert_model, params)
+ self.hubert_model, self.cs_sim, params)
svc_offline_logger.info(f"{worker_attr.vocal_url}, err_code={err_code} process svc sp = {time.time() - st}")
return gender, err_code
diff --git a/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x.py b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x.py
new file mode 100644
index 0000000..de081e2
--- /dev/null
+++ b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x.py
@@ -0,0 +1,1271 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions_in_dec as attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+from thop import profile
+from diffuse_fang.diffUse_wraper import diff_decoder,ddpm_para
+ddpm_dp = ddpm_para()
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ #self.emb_g = nn.Linear(256, hidden_channels)
+
+ def forward(self, phone, pitch, lengths,g):#fang add
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch) #+ self.emb_g(g)
+ #print("@@@x:",x.shape)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ #print("@@@x1:",x.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ #x = self.encoder(x * x_mask, x_mask,g)
+ x = self.encoder(x * x_mask, x_mask,g)#fang add
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask,x
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)#均值和方差 fang
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask ##随机采样 fang
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ self.ups_g = nn.ModuleList()# fang add
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ self.ups_g.append(
+ nn.Conv1d(upsample_initial_channel,upsample_initial_channel // (2 ** (i + 1) ), 1)
+ #F.interpolate(input, scale_factor=2, mode='nearest')
+ )# fang add
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ #x = x + self.cond(g) ##org
+ tmp_g = self.cond(g) ##fang add
+ x = x + tmp_g ##fang add
+ #print('###@@@@##x:',x.shape )
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xg = self.ups_g[i](tmp_g) #fang add
+ x = x + xg #fang add
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ #print('@@@@##x:',x.shape)
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+ "24k": 24000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ #print("@@@pitch.shape: ",pitch.shape)
+ #g = ds.unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ ) #按照self.segment_size这个长度,进行随机切割z,长度固定,开始位置不同存在ids_slice中,z_slice是切割的结果, fang
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ print('z shape: ',z.shape)
+ print('x_mask shape: ',x_mask.shape)
+ z_x_mask = z * x_mask
+ print('z_x_mask shape: ',z_x_mask.shape)
+ print('nsff0 shape:p', nsff0.shape)
+ print('g shape: ',g.shape)
+ o = self.dec(z * x_mask, nsff0, g=g)
+
+ self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+ def get_floats(self,):
+ T = 21.4 #郭宇_但愿人长久_40k.wav
+ z = torch.randn(1,192 ,2740)# 2s data(同时用2s数据验证,整数倍就对了,防止干扰)
+ x_mask = torch.randn(1,1 ,2740)
+ g = torch.randn(1,256 ,1)
+
+ inputs_bfcc = z #z * x_mask
+ nsff0 = torch.randn(1, 2740)
+ devices = 'cuda' #'cpu'
+ self.dec = self.dec.to(devices).half()
+ inputs_bfcc , nsff0, g = inputs_bfcc.to(devices).half(), nsff0.to(devices).half(), g.to(devices).half()
+ flops, params = profile(self.dec, (inputs_bfcc, nsff0, g))
+ print(f'@@@hifi-gan nsf decflops: {flops/(T*pow(10,9))} GFLOPS, params: { params/pow(10,6)} M')
+ return 0
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ #for p in self.flow.parameters():
+ # p.requires_grad=False
+ #for p in self.enc_p.parameters():
+ # p.requires_grad=False
+
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ self.diff_decoder = diff_decoder
+ #self.diff_cond_g = nn.Conv1d(256,192, 1)
+ self.diff_cond_gx = self.zero_module(self.conv_nd(1, 256, 192, 3, padding=1))
+ self.diff_cond_out = self.zero_module(self.conv_nd(1, 192, 192, 3, padding=1))
+ self.lzp = 0.1
+ self.ssl_proj = self.zero_module(nn.Conv1d(256*2, 256, 1, stride=1))
+ self.ssl_proj1 = self.zero_module(nn.Conv1d(256, 256, 1, stride=1))
+ self.ssl_proj1_norm = nn.BatchNorm1d(256)#, track_running_stats=False)#nn.LayerNorm(256)
+ self.ssl_proj2 = self.zero_module(nn.Conv1d(256, 256, 1, stride=1))
+ self.ssl_proj2_norm = nn.BatchNorm1d(256)#,track_running_stats=False)#nn.LayerNorm(256)
+
+ def zero_module(self,module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+ def conv_nd(self, dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+
+ g = ds.unsqueeze(-1)
+ #g = self.ssl_proj(g)#[:,256:,:])
+ g1 = self.ssl_proj1_norm( self.ssl_proj1(g[:,:256,:]))
+ g2 = self.ssl_proj2_norm( self.ssl_proj2(g[:,256:,:]))
+ g = g1 + g2
+
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)#self.enc_q = PosteriorEncoder ##这里面预测出了随机采样的隐变量z,m_q是均值,logs_q是方差,y_mask是mask的数据 fangi
+
+ z_p = self.flow(z, y_mask, g=g)# z是y_msk的输入
+ z_p_sample = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * y_mask
+ zx = self.flow(z_p_sample, y_mask, g=g, reverse=True)
+ #print("@@@@@g:",g.shape)
+ g_z_p = self.diff_cond_gx(g)
+ #print("@@@@@g_z_p:",g_z_p.shape)
+ z_res = z - zx
+
+
+ z_p1 = x_embed + g_z_p
+ ###diff st
+ z_p_diff = z_p1.transpose(1,2) ##b,frames,feat
+ z_diff = z_res.transpose(1,2) ##b,frames,feat
+
+ diff_loss,_ = self.diff_decoder(z_p_diff, gt_spec=z_diff, infer=False, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, use_tqdm=ddpm_dp.use_tqdm)
+
+
+ t = 200#np.random.randint(100,1000)#200#torch.randint(0, 1000, (b,), device=g.device).long()
+ z_diff = zx.transpose(1,2)
+ z_x_diff = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=t, use_tqdm=False)
+ #print("@@@z_x: ",z_x.shape)
+ z1 = z_x_diff.transpose(1,2)
+ z1 = self.diff_cond_out(z1)
+ z_in = (zx + z1)
+
+
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z_in, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q),diff_loss
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ g1 = self.ssl_proj1_norm( self.ssl_proj1(g[:,:256,:]))
+ g2 = self.ssl_proj2_norm( self.ssl_proj2(g[:,256:,:]))
+ g = g1 + g2
+
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g) #fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+
+ g_z_p = self.diff_cond_gx(g)
+ z_p1 = x_embed + g_z_p
+
+ z_p_diff = z_p1.transpose(1,2).float() ##b,frames,feat
+ z_diff = z.transpose(1,2) ##b,frames,feat
+ self.diff_decoder = self.diff_decoder.float()
+ z_x = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=200, use_tqdm=ddpm_dp.use_tqdm)
+ z1 = z_x.transpose(1,2).half()
+ z_res = self.diff_cond_out(z1)
+ z = z + z_res
+ o = self.dec(z * x_mask, nsff0, g=g)
+ #self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ #g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ g = ds.unsqueeze(-1)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) #org
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/AIMeiSheng/meisheng_env_preparex.py b/AIMeiSheng/meisheng_env_preparex.py
index f0c9854..62f0afb 100644
--- a/AIMeiSheng/meisheng_env_preparex.py
+++ b/AIMeiSheng/meisheng_env_preparex.py
@@ -1,38 +1,55 @@
import os
-from AIMeiSheng.docker_demo.common import (gs_svc_model_path, gs_hubert_model_path, gs_embed_model_path,
- gs_rmvpe_model_path, download2disk)
+from AIMeiSheng.docker_demo.common import (gs_svc_model_path, gs_hubert_model_path, gs_embed_model_path,gs_embed_model_spk_path, gs_embed_config_spk_path, gs_rmvpe_model_path, download2disk)
def meisheng_env_prepare(logging, AIMeiSheng_Path='./'):
cos_path = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/dataset/AIMeiSheng/"
rmvpe_model_url = cos_path + "rmvpe.pt"
if not os.path.exists(gs_rmvpe_model_path):
if not download2disk(rmvpe_model_url, gs_rmvpe_model_path):
logging.fatal(f"download rmvpe_model err={rmvpe_model_url}")
gs_hubert_model_url = cos_path + "hubert_base.pt"
if not os.path.exists(gs_hubert_model_path):
if not download2disk(gs_hubert_model_url, gs_hubert_model_path):
logging.fatal(f"download hubert_model err={gs_hubert_model_url}")
#model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth"
- model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_ocean_ctl_enc_e22_s363704.pth"
+ #model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_ocean_ctl_enc_e22_s363704.pth"
+ model_svc = "xusong_v2_org_version_alldata_embed_spkenx200x_vocal_e22_s95040.pth"
base_dir = os.path.dirname(gs_svc_model_path)
os.makedirs(base_dir, exist_ok=True)
svc_model_url = cos_path + model_svc
if not os.path.exists(gs_svc_model_path):
if not download2disk(svc_model_url, gs_svc_model_path):
logging.fatal(f"download svc_model err={svc_model_url}")
model_embed = "model.pt"
base_dir = os.path.dirname(gs_embed_model_path)
os.makedirs(base_dir, exist_ok=True)
embed_model_url = cos_path + model_embed
if not os.path.exists(gs_embed_model_path):
if not download2disk(embed_model_url, gs_embed_model_path):
logging.fatal(f"download embed_model err={embed_model_url}")
+ model_spk_embed = "best_model.pth.tar"
+ base_dir = os.path.dirname(gs_embed_model_spk_path)
+ os.makedirs(base_dir, exist_ok=True)
+ embed_model_url = cos_path + model_spk_embed
+ if not os.path.exists(gs_embed_model_spk_path):
+ if not download2disk(embed_model_url, gs_embed_model_spk_path):
+ logging.fatal(f"download embed_model err={embed_model_url}")
+
+
+ model_spk_embed_cfg = "config.json"
+ base_dir = os.path.dirname(gs_embed_config_spk_path)
+ os.makedirs(base_dir, exist_ok=True)
+ embed_model_url = cos_path + model_spk_embed_cfg
+ if not os.path.exists(gs_embed_config_spk_path):
+ if not download2disk(embed_model_url, gs_embed_config_spk_path):
+ logging.fatal(f"download embed_model err={embed_model_url}")
+
if __name__ == "__main__":
meisheng_env_prepare()
diff --git a/AIMeiSheng/meisheng_svc_final.py b/AIMeiSheng/meisheng_svc_final.py
index 6cddfdc..2080cba 100644
--- a/AIMeiSheng/meisheng_svc_final.py
+++ b/AIMeiSheng/meisheng_svc_final.py
@@ -1,242 +1,247 @@
import os
import sys
sys.path.append(os.path.dirname(__file__))
import time
import shutil
import glob
import hashlib
import librosa
import soundfile
import gradio as gr
import pandas as pd
import numpy as np
from AIMeiSheng.RawNet3.infererence_fang_meisheng import get_embed, get_embed_model
-from myinfer_multi_spk_embed_in_dec_diff_fi_meisheng import svc_main, load_hubert, get_vc, get_rmvpe
+#from myinfer_multi_spk_embed_in_dec_diff_fi_meisheng import svc_main, load_hubert, get_vc, get_rmvpe
+from AIMeiSheng.myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x import svc_main,load_hubert, get_vc,get_rmvpe
+
from gender_classify import load_gender_model
from AIMeiSheng.docker_demo.common import gs_svc_model_path, gs_embed_model_path, gs_rmvpe_model_path, gs_err_code_target_silence
from slicex.slice_set_silence import del_noise
gs_simple_mixer_path = "/data/gpu_env_common/bin/simple_mixer" ##混音执行文件
tmp_workspace_name = "batch_test_ocean_fi" # 工作空间名
song_folder = "./data_meisheng/" ##song folder
gs_work_dir = f"./data_meisheng/{tmp_workspace_name}" # 工作空间路径
pth_model_path = "./weights/xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth" ##模型文件
cur_dir = os.path.abspath(os.path.dirname(__file__))
abs_path = os.path.join(cur_dir, song_folder, tmp_workspace_name) + '/'
f0_method = None
def mix(in_path, acc_path, dst_path):
# svc转码到442
svc_442_file = in_path + "_442.wav"
st = time.time()
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} -loglevel fatal".format(in_path, svc_442_file)
os.system(cmd)
if not os.path.exists(svc_442_file):
return -1
print("transcode,{},sp={}".format(in_path, time.time() - st))
# 混合
st = time.time()
cmd = "{} {} {} {} 1".format(gs_simple_mixer_path, svc_442_file, acc_path, dst_path)
os.system(cmd)
print("mixer,{},sp={}".format(in_path, time.time() - st))
def load_model():
global f0_method
embed_model = get_embed_model(gs_embed_model_path)
hubert_model = load_hubert()
get_vc(gs_svc_model_path)
f0_method = get_rmvpe(gs_rmvpe_model_path)
print("model preload finish!!!")
return embed_model, hubert_model # ,svc_model
def meisheng_init():
embed_model, hubert_model = load_model() ##提前加载模型
gender_model = load_gender_model()
return embed_model, hubert_model, gender_model
def pyin_process_single_rmvpe(input_file):
global f0_method
if f0_method is None:
f0_method = get_rmvpe()
rate = 16000 # 44100
# 读取音频文件
y, sr = librosa.load(input_file, sr=rate)
len_s = len(y) / sr
lim_s = 15 # 10
f0_limit_10ms = 10
if (len_s > lim_s):
y1 = y[:sr * lim_s]
y2 = y[-sr * lim_s:]
f0 = f0_method.infer_from_audio(y1, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch1 = np.mean(valid_f0)
else:
mean_pitch1 = 0
f0 = f0_method.infer_from_audio(y2, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch2 = np.mean(valid_f0)
else:
mean_pitch2 = 0
if mean_pitch2 == 0 and mean_pitch1 == 0:
mean_pitch_cur = 0
elif mean_pitch2 == 0 or mean_pitch1 == 0:
mean_pitch_cur = max(mean_pitch1, mean_pitch2)
elif abs(mean_pitch1 - mean_pitch2) > 55:
mean_pitch_cur = min(mean_pitch1, mean_pitch2)
else:
mean_pitch_cur = (mean_pitch1 + mean_pitch2) / 2
else:
f0 = f0_method.infer_from_audio(y, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch_cur = np.mean(valid_f0)
else:
mean_pitch_cur = 0
return mean_pitch_cur
-def meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras):
+def meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras):
##计算pitch
f0up_key = pyin_process_single_rmvpe(target_wav)
if f0up_key < 40 or np.isnan(f0up_key):#unvoice
return gs_err_code_target_silence
## get embed, 音色
get_embed(target_wav, embed_npy, embed_md)
+ embed_npy_spk = embed_npy[:-4] + '_spk.npy'
+ cs_sim.get_spk_embed(target_wav, embed_npy_spk)
+ print("get embed_npy_spk: {embed_npy_spk} ")
print("svc main start...")
svc_main(song_wav, svc_out_path, embed_npy, f0up_key, hubert_md, paras)
print("svc main finished!!")
del_noise(song_wav,svc_out_path,paras)
print("del noise in silence")
return 0
-def process_svc_online(song_wav, target_wav, svc_out_path, embed_md, hubert_md, paras):
+def process_svc_online(song_wav, target_wav, svc_out_path, embed_md, hubert_md, cs_sim, paras):
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
- err_code = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras)
+ err_code = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras)
return err_code
-def process_svc(song_wav, target_wav, svc_out_path, embed_md, hubert_md, paras):
+def process_svc(song_wav, target_wav, svc_out_path, embed_md, hubert_md, cs_sim, paras):
song_wav1, target_wav, svc_out_path = os.path.basename(song_wav), os.path.basename(
target_wav), os.path.basename(svc_out_path) # 绝对路径
song_wav, target_wav, svc_out_path = song_wav, abs_path + target_wav, abs_path + svc_out_path
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
# similar = meisheng_svc(song_wav,target_wav,svc_out_path,embed_npy,paras)
- similar = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras)
+ similar = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras)
return similar
def get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras):
'''
:param target_yinse_wav: 目标音色
:param song_name: 歌曲名字
;param paras: 其他参数
:return: svc路径名
'''
##清空工作空间临时路径
if os.path.exists(gs_work_dir):
# shutil.rmtree(gs_work_dir)
cmd = f"rm -rf {gs_work_dir}/*"
os.system(cmd)
else:
os.makedirs(gs_work_dir)
gender = paras['gender'] ##为了确定歌曲
##目标音色读取
f_dst = os.path.join(gs_work_dir, os.path.basename(target_yinse_wav))
# print("dir :", f_dst,"target_yinse_wav:",target_yinse_wav)
# shutil.move(target_yinse_wav, f_dst) ##放在工作目录
shutil.copy(target_yinse_wav, f_dst)
target_yinse_wav = f_dst
##歌曲/伴奏 读取(路径需要修改)
song_wav = os.path.join("{}{}/{}/vocal321.wav".format(song_folder, gender, song_name)) # 歌曲vocal
inf_acc_path = os.path.join("{}{}/{}/acc.wav".format(song_folder, gender, song_name))
# song_wav = './xusong_long.wav'
svc_out_path = os.path.join(gs_work_dir, "svc.wav") ###svc结果名字
print("inputMsg:", song_wav, target_yinse_wav, svc_out_path)
## svc process
st = time.time()
print("start inference...")
- similar = process_svc(song_wav, target_yinse_wav, svc_out_path, embed_model, hubert_model, paras)
+ similar = process_svc(song_wav, target_yinse_wav, svc_out_path, embed_model, hubert_model, cs_sim, paras)
print("svc finished!!")
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(svc_out_path))
# '''
##加混响
print("add reverbration...")
svc_out_path_effect = svc_out_path[:-4] + '_effect.wav'
cmd = f"/data/gpu_env_common/bin/effect_tool {svc_out_path} {svc_out_path_effect}"
print("cmd :", cmd)
os.system(cmd)
# # 人声伴奏合并
print("add acc...")
out_path = svc_out_path_effect[:-4] + '_music.wav'
mix(svc_out_path_effect, inf_acc_path, out_path)
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(out_path))
# '''
return svc_out_path
def meisheng_func(target_yinse_wav, song_name, paras):
##init
embed_model, hubert_model, gender_model = meisheng_init()
###gender predict
gender, female_rate, is_pure = gender_model.process(target_yinse_wav)
print('=====================')
print("gender:{}, female_rate:{},is_pure:{}".format(gender, female_rate, is_pure))
if gender == 0:
gender = 'female'
elif gender == 1:
gender = 'male'
elif female_rate > 0.5:
gender = 'female'
else:
gender = 'male'
print("modified gender:{} ".format(gender))
print('=====================')
##美声main
paras['gender'] = gender ##单位都是ms
get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras)
if __name__ == '__main__':
# target_yinse_wav = "./raw/meisheng_yinse/female/changying.wav" # 需要完整路径
target_yinse_wav = "./raw/meisheng_yinse/female/target_yinse_cloris.m4a"
song_name = "lost_stars" ##歌曲名字
paras = {'gender': None, 'tst': 0, "tnd": None, 'delay': 0, 'song_path': None}
# paras = {'gender': 'female', 'tst': 0, "tnd": 30, 'delay': 0} ###片段svc测试
meisheng_func(target_yinse_wav, song_name, paras)
diff --git a/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x.py b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x.py
new file mode 100644
index 0000000..f4944c7
--- /dev/null
+++ b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x.py
@@ -0,0 +1,217 @@
+
+import os,sys,pdb,torch
+now_dir = os.getcwd()
+sys.path.append(now_dir)
+import argparse
+import glob
+import sys
+import torch
+from multiprocessing import cpu_count
+class Config:
+ def __init__(self,device,is_half):
+ self.device = device
+ self.is_half = is_half
+ self.n_cpu = 0
+ self.gpu_name = None
+ self.gpu_mem = None
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
+
+ def device_config(self) -> tuple:
+ current_dir = os.path.dirname(os.path.abspath(__file__))
+ config_path = os.path.join(current_dir, "configs")
+ if torch.cuda.is_available():
+ i_device = int(self.device.split(":")[-1])
+ self.gpu_name = torch.cuda.get_device_name(i_device)
+ if (
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
+ or "P40" in self.gpu_name.upper()
+ or "1060" in self.gpu_name
+ or "1070" in self.gpu_name
+ or "1080" in self.gpu_name
+ ):
+ print("16系/10系显卡和P40强制单精度")
+ self.is_half = False
+ for config_file in ["32k.json", "40k.json", "48k.json"]:
+ with open(f"{config_path}/{config_file}", "r") as f:
+ strr = f.read().replace("true", "false")
+ with open(f"{config_path}/{config_file}", "w") as f:
+ f.write(strr)
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ else:
+ self.gpu_name = None
+ self.gpu_mem = int(
+ torch.cuda.get_device_properties(i_device).total_memory
+ / 1024
+ / 1024
+ / 1024
+ + 0.4
+ )
+ if self.gpu_mem <= 4:
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ elif torch.backends.mps.is_available():
+ print("没有发现支持的N卡, 使用MPS进行推理")
+ self.device = "mps"
+ else:
+ print("没有发现支持的N卡, 使用CPU进行推理")
+ self.device = "cpu"
+ self.is_half = True
+
+ if self.n_cpu == 0:
+ self.n_cpu = cpu_count()
+
+ if self.is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 80 #60
+ x_max = 85#65
+ else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
+
+ if self.gpu_mem != None and self.gpu_mem <= 4:
+ x_pad = 1
+ x_query = 5
+ x_center = 30
+ x_max = 32
+
+ return x_pad, x_query, x_center, x_max
+
+
+index_path="./logs/xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_muloss_show/added_IVF614_Flat_nprobe_1_xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_show_v2.index"
+# f0method="rmvpe" #harvest or pm
+index_rate=float("0.0") #index rate
+device="cuda:0"
+is_half=True
+filter_radius=int(3) ##3
+resample_sr=int(0) # 0
+rms_mix_rate=float(1) # rms混合比例 1,不等于1混合
+protect=float(0.33 )## ??? 0.33 fang
+
+
+
+#print(sys.argv)
+config=Config(device,is_half)
+now_dir=os.getcwd()
+sys.path.append(now_dir)
+
+from vc_infer_pipeline_org_embed_spk import VC
+from lib.infer_pack.models_embed_in_dec_diff_control_enc_spken200x import (
+ SynthesizerTrnMs256NSFsid,
+ SynthesizerTrnMs256NSFsid_nono,
+ SynthesizerTrnMs768NSFsid,
+ SynthesizerTrnMs768NSFsid_nono,
+)
+from lib.audio import load_audio
+from fairseq import checkpoint_utils
+from scipy.io import wavfile
+from AIMeiSheng.docker_demo.common import gs_hubert_model_path
+# hubert_model=None
+def load_hubert():
+ # global hubert_model
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([gs_hubert_model_path],suffix="",)
+ #models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["checkpoint_best_legacy_500.pt"],suffix="",)
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(device)
+ if(is_half):hubert_model = hubert_model.half()
+ else:hubert_model = hubert_model.float()
+ hubert_model.eval()
+ return hubert_model
+
+def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,hubert_model,paras):
+ global tgt_sr,net_g,vc,version
+ if input_audio is None:return "You need to upload an audio", None
+ f0_up_key = int(f0_up_key)
+ # print("@@xxxf0_up_key:",f0_up_key)
+ audio = load_audio(input_audio,16000)
+ if paras != None:
+ st = int(paras['tst'] * 16000/1000)
+ en = len(audio)
+ if paras['tnd'] != None:
+ en = min(en,int(paras['tnd'] * 16000/1000))
+ audio = audio[st:en]
+
+ times = [0, 0, 0]
+ if(hubert_model==None):
+ hubert_model = load_hubert()
+ if_f0 = cpt.get("f0", 1)
+ audio_opt=vc.pipeline_mulprocess(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius,tgt_sr,resample_sr,rms_mix_rate,version,protect,f0_file=f0_file)
+
+ #print(times)
+ #print("@@using multi process")
+ return audio_opt
+
+
+def get_vc_core(model_path,is_half):
+
+ #print("loading pth %s" % model_path)
+ cpt = torch.load(model_path, map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
+ if_f0 = cpt.get("f0", 1)
+ version = cpt.get("version", "v1")
+ if version == "v1":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ elif version == "v2":
+ if if_f0 == 1: #
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
+ else:
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
+ #print("load model finished")
+ del net_g.enc_q
+ net_g.load_state_dict(cpt["weight"], strict=False)
+ #print("load net_g finished")
+
+ return tgt_sr,net_g,cpt,version
+
+def get_vc1(model_path,is_half):
+ tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
+
+ net_g.eval().to(device)
+ if (is_half):net_g = net_g.half()
+ else:net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ n_spk=cpt["config"][-3]
+ return
+def get_rmvpe(model_path="rmvpe.pt"):
+ from lib.rmvpe import RMVPE
+ global f0_method
+ #print("loading rmvpe model")
+ f0_method = RMVPE(model_path, is_half=True, device='cuda')
+ return f0_method
+
+
+def get_vc(model_path):
+ global n_spk,tgt_sr,net_g,vc,cpt,device,is_half,version
+ tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
+
+ net_g.eval().to(device)
+ if (is_half):net_g = net_g.half()
+ else:net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ n_spk=cpt["config"][-3]
+ # return {"visible": True,"maximum": n_spk, "__type__": "update"}
+ # return net_g
+
+
+def svc_main(input_path,opt_path,sid_embed,f0up_key=0,hubert_model=None, paras=None):
+ #print("sid_embed: ",sid_embed)
+ wav_opt = vc_single(sid_embed,input_path,f0up_key,None,f0_method,index_path,index_rate,hubert_model,paras)
+ #print("out_path: ",opt_path)
+ wavfile.write(opt_path, tgt_sr, wav_opt)
+
+
+
+
diff --git a/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py b/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py
new file mode 100644
index 0000000..076184f
--- /dev/null
+++ b/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py
@@ -0,0 +1,778 @@
+import numpy as np, parselmouth, torch, pdb, sys, os
+from time import time as ttime
+import torch.nn.functional as F
+import scipy.signal as signal
+import pyworld, os, traceback, faiss, librosa, torchcrepe
+from scipy import signal
+from functools import lru_cache
+
+now_dir = os.getcwd()
+sys.path.append(now_dir)
+
+bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
+
+input_audio_path2wav = {}
+fidx = 0
+
+import threading
+import concurrent.futures
+
+
+@lru_cache
+def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
+ audio = input_audio_path2wav[input_audio_path]
+ f0, t = pyworld.harvest(
+ audio,
+ fs=fs,
+ f0_ceil=f0max,
+ f0_floor=f0min,
+ frame_period=frame_period,
+ )
+ f0 = pyworld.stonemask(audio, f0, t, fs)
+ return f0
+
+
+def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
+ # print(data1.max(),data2.max())
+ rms1 = librosa.feature.rms(
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
+ ) # 每半秒一个点
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
+ rms1 = torch.from_numpy(rms1)
+ rms1 = F.interpolate(
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.from_numpy(rms2)
+ rms2 = F.interpolate(
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
+ data2 *= (
+ torch.pow(rms1, torch.tensor(1 - rate))
+ * torch.pow(rms2, torch.tensor(rate - 1))
+ ).numpy()
+ return data2
+
+
+class VC(object):
+ def __init__(self, tgt_sr, config):
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
+ config.x_pad, ##config会根据设备配置不通知如:3
+ config.x_query, # 10 等于x_max-x_center)*2
+ config.x_center, #60
+ config.x_max, #65
+ config.is_half,
+ )
+ self.sr = 16000 # hubert输入采样率
+ self.window = 160 # 每帧点数
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
+ self.t_pad_tgt = tgt_sr * self.x_pad
+ self.t_pad2 = self.t_pad * 2
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间,
+ self.t_center = self.sr * self.x_center # 查询切点位置
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
+ self.device = config.device
+
+ def get_f0(
+ self,
+ input_audio_path,
+ x,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0=None,
+ ):
+ global input_audio_path2wav
+ time_step = self.window / self.sr * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ if f0_method == "pm":
+ f0 = (
+ parselmouth.Sound(x, self.sr)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=f0_min,
+ pitch_ceiling=f0_max,
+ )
+ .selected_array["frequency"]
+ )
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
+ )
+ elif f0_method == "harvest":
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
+ if filter_radius > 2:
+ f0 = signal.medfilt(f0, 3)
+ elif f0_method == "crepe":
+ model = "full"
+ # Pick a batch size that doesn't cause memory errors on your gpu
+ batch_size = 512
+ # Compute pitch using first gpu
+ audio = torch.tensor(np.copy(x))[None].float()
+ f0, pd = torchcrepe.predict(
+ audio,
+ self.sr,
+ self.window,
+ f0_min,
+ f0_max,
+ model,
+ batch_size=batch_size,
+ device=self.device,
+ return_periodicity=True,
+ )
+ pd = torchcrepe.filter.median(pd, 3)
+ f0 = torchcrepe.filter.mean(f0, 3)
+ f0[pd < 0.1] = 0
+ f0 = f0[0].cpu().numpy()
+ elif f0_method == "rmvpe":
+ if hasattr(self, "model_rmvpe") == False:
+ from lib.rmvpe import RMVPE
+
+ print("loading rmvpe model")
+ self.model_rmvpe = RMVPE(
+ "rmvpe.pt", is_half=self.is_half, device=self.device
+ )
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
+ else: ##for meisheng
+ self.model_rmvpe = f0_method
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
+
+ ##这里读文件,更改pitch st fang
+ valid_f0 = f0[f0 > 50]
+ mean_pitch_cur = np.mean(valid_f0[:min(len(valid_f0),500)])
+
+
+ #print("@@f0_up_key:",f0_up_key)
+ deta = 0
+ if(f0_up_key > 50 ):
+ deta = -mean_pitch_cur + f0_up_key
+
+ #print("$$$$$$$$$fangxxxxx pitch shift: ",deta)
+ f0_up_key = int(np.log2(deta/(mean_pitch_cur + 1) + 1) * 12)##方法2 fang
+ if( abs(f0_up_key) <= 8 ):
+ f0_up_key = 0
+ elif f0_up_key > 8:
+ f0_up_key = 12
+ elif f0_up_key < -8:
+ f0_up_key = -12
+ #if( abs(f0_up_key) < 3 ):
+ # f0_up_key = 0
+ f0_up_key = max(min(12,f0_up_key),-12)
+ #print("f0_up_key: ",f0_up_key)
+
+ f0 *= pow(2, f0_up_key / 12)#这块是音调更改 fang 我设置的0
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ tf0 = self.sr // self.window # 每秒f0点数
+ if inp_f0 is not None:
+ delta_t = np.round(
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
+ ).astype("int16")
+ replace_f0 = np.interp(
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
+ )
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
+ :shape
+ ]
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+
+
+ f0bak = f0.copy()
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(int)
+ return f0_coarse, f0bak # 1-0
+
+ def vc(
+ self,
+ model,
+ net_g,
+ sid,
+ audio0,
+ pitch,
+ pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ ): # ,file_index,file_big_npy
+ feats = torch.from_numpy(audio0)
+ if self.is_half:
+ feats = feats.half()
+ else:
+ feats = feats.float()
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
+ #print("@@@feats: ",feats.shape)
+ #print("@@@padding_mask: ",padding_mask.shape)
+ inputs = {
+ "source": feats.to(self.device),
+ "padding_mask": padding_mask,
+ "output_layer": 9 if version == "v1" else 12,
+ #"output_layer": 6 if version == "v1" else 12,
+ }
+ t0 = ttime()
+ #'''
+ with torch.no_grad():
+ logits = model.extract_features(**inputs)
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]#为何v1要转化,维度问题??? fang
+ #'''
+
+ #print("@@@feats: ",feats.shape)
+ '''
+ global fidx
+ feats_name = f"./feats_{fidx}.pt"
+ fidx += 1
+ torch.save(feats, feats_name)
+ feats = torch.load(feats_name)
+ #'''
+
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = feats.clone()
+ if (
+ isinstance(index, type(None)) == False
+ and isinstance(big_npy, type(None)) == False
+ and index_rate != 0
+ ):
+ npy = feats[0].cpu().numpy()
+ if self.is_half:
+ npy = npy.astype("float32")
+
+ # _, I = index.search(npy, 1)
+ # npy = big_npy[I.squeeze()]
+
+ score, ix = index.search(npy, k=8)
+ weight = np.square(1 / score)
+ weight /= weight.sum(axis=1, keepdims=True)
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
+
+ if self.is_half:
+ npy = npy.astype("float16")
+ feats = (
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ + (1 - index_rate) * feats
+ )##基于index和实际音频的特征进行组合,作为输入 fang
+
+ #print("@@@feats: ",feats.shape)
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
+ 0, 2, 1
+ )#feats0的维度1 插值增加一倍 fang
+ t1 = ttime()
+ p_len = audio0.shape[0] // self.window ##分帧求pitch fang
+ if feats.shape[1] < p_len:
+ p_len = feats.shape[1]
+ if pitch != None and pitchf != None:
+ pitch = pitch[:, :p_len]
+ pitchf = pitchf[:, :p_len]
+
+ if protect < 0.5 and pitch != None and pitchf != None:
+ pitchff = pitchf.clone()
+ pitchff[pitchf > 0] = 1
+ pitchff[pitchf < 1] = protect
+ pitchff = pitchff.unsqueeze(-1)
+ feats = feats * pitchff + feats0 * (1 - pitchff)
+ feats = feats.to(feats0.dtype)
+ p_len = torch.tensor([p_len], device=self.device).long()
+ #print("###feats:",feats.shape,"pitch:",pitch.shape,"p_len:",p_len)
+ with torch.no_grad():
+ if pitch != None and pitchf != None:
+ audio1 = (
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
+ .data.cpu()
+ .float()
+ .numpy()
+ )
+ else:
+ audio1 = (
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
+ )
+ del feats, p_len, padding_mask
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ t2 = ttime()
+ times[0] += t1 - t0
+ times[2] += t2 - t1
+ return audio1
+
+ def pipeline(
+ self,
+ model,
+ net_g,
+ sid,
+ audio,## input wav
+ input_audio_path, #input wav name
+ times,
+ f0_up_key,
+ f0_method,# f0 meathod
+ file_index, #index 路径
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ ):
+ if (
+ file_index != "" #.index文件不为空 fang
+ # and file_big_npy != ""
+ # and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ # big_npy = np.load(file_big_npy)
+ big_npy = index.reconstruct_n(0, index.ntotal)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ #print("####audio 1:",audio.shape)
+ audio = signal.filtfilt(bh, ah, audio)
+ #print("####audio 2:",audio.shape)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+
+ #print("###t_max:",self.t_max)
+ #print("###window:",self.window,"self.t_query:",self.t_query,"self.t_pad2:",self.t_pad2)
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i : i - self.window]#这样算循环了,每个idx是过去一帧的值的和 fang
+ for t in range(self.t_center, audio.shape[0], self.t_center):#一分钟一帧?? fang
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
+ )[0][0]
+ )#返回[ t - self.t_query, t+self.t_query] 区间最小值位置的索引保存,fang
+ s = 0
+ audio_opt = []
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ #sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+
+ sid_embed = np.load(sid)
+ sid = torch.FloatTensor(sid_embed).to(self.device).half()
+ pitch, pitchf = None, None
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(
+ input_audio_path,
+ audio_pad,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0,
+ )
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ if self.device == "mps":
+ pitchf = pitchf.astype(np.float32)
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+
+ #print("&&&&pitch: ",pitchf)
+ t2 = ttime()
+ times[1] += t2 - t1
+ #print("####len(audio_pad):",len(audio_pad))
+ #print("###pitch:", pitch.shape)
+ for t in opt_ts: #分段推理每段音频,一段这里设置60s左右 fang
+ t = t // self.window * self.window
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ s = t
+ if if_f0 == 1: ##后面是最后一段处理 fang
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window :] if t is not None else pitch,
+ pitchf[:, t // self.window :] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ audio_opt = np.concatenate(audio_opt)
+ if rms_mix_rate != 1:
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
+ audio_opt = librosa.resample(
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
+ )
+ audio_max = np.abs(audio_opt).max() / 0.99
+ max_int16 = 32768
+ if audio_max > 1:
+ max_int16 /= audio_max
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt
+
+ def infer_core_fang(self,para1,para2,para3,idx,
+ model,
+ net_g,
+ sid,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect):
+ return [ self.vc(
+ model,
+ net_g,
+ sid,
+ para1, para2, para3,
+ # audio_pad[s: t + self.t_pad2 + self.window],
+ # pitch[:, s // self.window: (t + self.t_pad2) // self.window],
+ # pitchf[:, s // self.window: (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt: -self.t_pad_tgt], idx]
+
+ def ThreadPool_process_core(self, func_process,params1,params2,params3,
+ model,
+ net_g,
+ sid,
+ # audio_pad[s: t + self.t_pad2 + self.window],
+ # pitch[:, s // self.window: (t + self.t_pad2) // self.window],
+ # pitchf[:, s // self.window: (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect
+ ):
+ num_threads = 2
+ futures = []
+ sort_ret = {}
+ with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
+ for idx in range(len(params1)):
+ para1 = params1[idx]
+ para2 = params2[idx]
+ para3 = params3[idx]
+ ret = executor.submit(self.infer_core_fang,para1,para2,para3,idx,
+ model,
+ net_g,
+ sid,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect)
+ futures.append(ret)
+
+ cnt = 0
+ for future in concurrent.futures.as_completed(futures):
+ cnt += 1
+ #print(f"process finised {cnt}, and index :{future.result()[1]}")
+
+ #print(future.result()) # result
+ # print(future.result()[1]) ##index
+ sort_ret[str(future.result()[1])] = future.result()[0]
+
+
+ fea_list = []
+ for idx in range(len(sort_ret)):
+ fea_list.append(sort_ret[str(idx)])
+
+ return fea_list
+
+ def pipeline_mulprocess(
+ self,
+ model,
+ net_g,
+ sid,
+ audio, ## input wav
+ input_audio_path, # input wav name
+ times,
+ f0_up_key,
+ f0_method, # f0 meathod
+ file_index, # index 路径
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ ):
+ if (
+ file_index != "" # .index文件不为空 fang
+ # and file_big_npy != ""
+ # and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ # big_npy = np.load(file_big_npy)
+ big_npy = index.reconstruct_n(0, index.ntotal)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ audio = signal.filtfilt(bh, ah, audio)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i: i - self.window] # 这样算循环了,每个idx是过去一帧的值的和 fang
+ for t in range(self.t_center, audio.shape[0], self.t_center): # 一分钟一帧?? fang
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query: t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query: t + self.t_query]).min()
+ )[0][0]
+ ) # 返回[ t - self.t_query, t+self.t_query] 区间最小值位置的索引保存,fang
+ s = 0
+
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ # sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+ sid_embed = np.load(sid)
+ embed_npy_spk = sid[:-4] + '_spk.npy'
+ sid_spk_embed = np.load(embed_npy_spk )
+ print("555555sid_embed:",np.shape(sid_embed),'type:',type(sid_embed))
+ print('sid_spk_embed:', np.shape(sid_spk_embed), 'type:',type(sid_spk_embed))
+ sid_embed = np.concatenate((sid_embed, sid_spk_embed),axis=0)
+ print('sid_embed:', np.shape(sid_embed), 'type:',type(sid_embed))
+ sid = torch.FloatTensor(sid_embed).to(self.device).half()
+
+ #sid_embed = np.load(sid)
+ #sid = torch.FloatTensor(sid_embed).to(self.device).half()
+ print('sid:',sid.shape)
+
+ pitch, pitchf = None, None
+ #'''
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(
+ input_audio_path,
+ audio_pad,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0,
+ )
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ if self.device == "mps":
+ pitchf = pitchf.astype(np.float32)
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+ #'''
+
+ '''
+ pitch_name = "./pitch_pitchf.npz"
+ #np.savez(pitch_name, pitch = pitch.detach().cpu().numpy(), pitchf = pitchf.detach().cpu().numpy())
+ npz_obj = np.load(pitch_name) #文件名的后缀为npz
+ pitch, pitchf = npz_obj['pitch'], npz_obj['pitchf']
+ pitch = torch.tensor(pitch, device=self.device).long()
+ pitchf = torch.tensor(pitchf, device=self.device).float()
+ #'''
+
+ t2 = ttime()
+ times[1] += t2 - t1
+
+ audio_opt = []
+ audio_pad_list = []
+ pitch_list = []
+ pitchf_list = []
+
+
+ for t in opt_ts: # 分段推理每段音频,一段这里设置60s左右 fang
+ t = t // self.window * self.window
+ audio_pad_list.append(audio_pad[s: t + self.t_pad2 + self.window])
+ pitch_list.append(pitch[:, s // self.window: (t + self.t_pad2) // self.window])
+ pitchf_list.append(pitchf[:, s // self.window: (t + self.t_pad2) // self.window])
+ s = t
+
+ audio_pad_list.append(audio_pad[t:])
+ pitch_list.append(pitch[:, t // self.window:] if t is not None else pitch)
+ pitchf_list.append(pitchf[:, t // self.window:] if t is not None else pitchf)
+
+ audio_opt = self.ThreadPool_process_core(self.infer_core_fang, audio_pad_list, pitch_list, pitchf_list,
+ model,
+ net_g,
+ sid,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect
+ )
+ '''
+ if if_f0 == 1: ##后面是最后一段处理 fang
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window:] if t is not None else pitch,
+ pitchf[:, t // self.window:] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt: -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt: -self.t_pad_tgt]
+ )
+ #'''
+ audio_opt = np.concatenate(audio_opt)
+ if rms_mix_rate != 1:
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
+ audio_opt = librosa.resample(
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
+ )
+ audio_max = np.abs(audio_opt).max() / 0.99
+ max_int16 = 32768
+ if audio_max > 1:
+ max_int16 /= audio_max
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt

File Metadata

Mime Type
text/x-diff
Expires
Sun, Jan 12, 08:35 (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1347213
Default Alt Text
(170 KB)

Event Timeline