Page MenuHomePhabricator

No OneTemporary

diff --git a/AutoCoverTool/online/inference_one.py b/AutoCoverTool/online/inference_one.py
index d49e42e..a59619e 100644
--- a/AutoCoverTool/online/inference_one.py
+++ b/AutoCoverTool/online/inference_one.py
@@ -1,711 +1,712 @@
"""
单个处理的逻辑
song_id:
---src.mp3 // 源数据,需要提前放进去
---cache
---vocal.wav // 分离之后产生
---acc.wav // 分离之后产生
---vocal_32.wav // 分离之后产生
---song_id_sp1.wav // 合成之后产生
---song_id_sp2.wav // 合成之后产生
---song_id_sp2_d.wav // 降噪之后生成
---song_id_sp2_dv.wav // 降噪+拉伸之后产生 [占比太高的不产生]
---song_id_sp2_dve442.wav // 手动调整之后产生
---song_id_sp2_dve442_replace.wav // 替换之后产生
---song_id_sp2_dve442_replace_mix.wav // 人声+伴奏混合之后产生
---song_id
--acc.mp3 // 44k双声道320k
--vocal.mp3 // 44k双声道320k
--src.mp3 // 44k双声道320k
--song_id_sp2_dv.mp3 // 44k单声道320k
---song_id_out // 对外输出
--src.mp3 // 原始音频
--song_id_sp2_dv_replace_mix.mp3 // 制作完成的音频
环境安装:
conda create -n auto_song_cover python=3.9
# 安装demucs环境[进入到ref.music_remover 执行pip install -r requirements.txt]
# 安装so_vits_svc环境[进入到ref.so_vits_svc 执行pip install -r requirements.txt]
pip install librosa
pip install scikit-maad
pip install praat-parselmouth
pip install matplotlib
pip install torchvision
pip install madmom
pip install torchstat
环境设置:
export PATH=$PATH:/data/gpu_env_common/env/bin/ffmpeg/bin
export PYTHONPATH=$PWD:$PWD/ref/music_remover/demucs:$PWD/ref/so_vits_svc:$PWD/ref/split_dirty_frame
"""
import os
import time
import shutil
import random
import logging
import librosa
logging.basicConfig(filename='/tmp/inference.log', level=logging.INFO)
gs_err_code_success = 0
gs_err_code_no_src_mp3 = 1
gs_err_code_separate = 2
gs_err_code_trans_32 = 3
gs_err_code_encode_err = 4
gs_err_code_replace_err = 5
gs_err_code_replace_trans_err = 6
gs_err_code_mix_err = 7
gs_err_code_mix_transcode_err = 8
gs_err_code_no_src_dir = 9
gs_err_code_volume_err = 10
gs_err_code_trans2_442 = 11
gs_err_code_reverb = 12
gs_err_code_no_good_choice = 13
gs_err_code_preprocess_vocal = 14
gs_err_code_replace_except_err = 15
gs_denoise_exe = "/opt/soft/bin/denoise_exe"
gs_draw_volume_exe = "/opt/soft/bin/draw_volume"
gs_simple_mixer_path = "/opt/soft/bin/simple_mixer"
gs_rever_path = "/opt/soft/bin/dereverbrate"
from ref.music_remover.separate_interface import SeparateInterface
from ref.so_vits_svc.inference_main import *
from ref.split_dirty_frame.script.process_one import ReplaceVocalFrame, construct_power_fragment
class SongCoverInference:
def __init__(self):
self.work_dir = None
self.cache_dir = None
self.cid = None
self.src_mp3 = None
self.vocal_path = None
self.vocal_32_path = None
self.acc_path = None
self.speakers = [
10414574138721494,
10414574140317353,
1688849864840588,
3634463651,
5629499489839033,
5910973794723621,
6755399374234747,
8162774327817435,
8162774329368194,
1125899914308640, # 以下为男声,包括这个
12384898975368914,
12947848931397021,
3096224748076687,
3096224751151928,
5066549357604730,
5348024335101054,
6755399442719465,
7036874421386111
]
self.speakers2gender = {
10414574138721494: 2,
10414574140317353: 2,
1688849864840588: 2,
3634463651: 2,
5629499489839033: 2,
5910973794723621: 2,
6755399374234747: 2,
8162774327817435: 2,
8162774329368194: 2,
1125899914308640: 1, # 1是男
12384898975368914: 1,
12947848931397021: 1,
3096224748076687: 1,
3096224751151928: 1,
5066549357604730: 1,
5348024335101054: 1,
6755399442719465: 1,
7036874421386111: 1
}
self.speakers_model_path = "data/train_users/{}/logs/32k/G_2000.pth"
self.speakers_model_config = "data/train_users/{}/config/config.json"
st = time.time()
self.separate_inst = None
logging.info("post process ... ReplaceVocalFrame init sp={}".format(time.time() - st))
self.replace_vocal_frame_inst = None
logging.info("SongCoverInference init sp={}".format(time.time() - st))
def separate(self, cid, src_mp3, vocal_path, acc_path):
"""
人声伴奏分离
:param cid:
:param src_mp3:
:param vocal_path:
:param acc_path:
:return:
"""
st = time.time()
if self.separate_inst is None:
self.separate_inst = SeparateInterface()
if not self.separate_inst.process(cid, src_mp3, vocal_path, acc_path):
return gs_err_code_separate
if not os.path.exists(vocal_path) or not os.path.exists(acc_path):
return gs_err_code_separate
# 转码出一个32k单声道的数据
cmd = "ffmpeg -i {} -ar 32000 -ac 1 -y {} -loglevel fatal".format(vocal_path, self.vocal_32_path)
os.system(cmd)
if not os.path.exists(self.vocal_32_path):
return gs_err_code_trans_32
print("separate:cid={}|sp={}".format(cid, time.time() - st))
return gs_err_code_success
def get_start_ms(self, vocal_path):
"""
给定原始音频,找一段连续10s的音频
:param vocal_path:
:return:
"""
audio, sr = librosa.load(vocal_path, sr=16000)
audio = librosa.util.normalize(audio)
# 帧长100ms,帧移10ms,计算能量
power_arr = []
for i in range(0, len(audio) - 1600, 160):
power_arr.append(np.sum(np.abs(audio[i:i + 160])) / 160)
# 将能量小于等于10的部分做成段
power_arr = construct_power_fragment(power_arr)
fragments = []
last_pos = 0
for idx, line in enumerate(power_arr):
start = round(float(line[0]) * 0.01, 3)
duration = round(float(line[1]) * 0.01, 3)
fragments.append([last_pos, start - last_pos])
last_pos = start + duration
if last_pos < len(audio) / sr:
fragments.append([last_pos, len(audio) / sr - last_pos])
# 合并数据,两者间隔在50ms以内的合并起来
idx = 0
while idx < len(fragments) - 1:
if fragments[idx + 1][0] - (fragments[idx][0] + fragments[idx][1]) < 0.05:
fragments[idx][1] = fragments[idx + 1][0] + fragments[idx + 1][1] - fragments[idx][0]
del fragments[idx + 1]
idx -= 1
idx += 1
# out_file = vocal_path + "_power.csv"
# with open(out_file, "w") as f:
# f.write("Name\tStart\tDuration\tTime Format\tType\n")
# for fragment in fragments:
# start = round(float(fragment[0]), 3)
# duration = round(float(fragment[1]), 3)
# strr = "{}\t{}\t{}\t{}\n".format("11", start, duration, "decimal\tCue\t")
# f.write(strr)
# 筛选出开始的位置
# 1. 连续时长大于10s,当前段长度大于3s
# 2. 不可用
# 从0到fragments[idx], 包含idx其中人声段的总和
tot_vocal_duration = [fragments[0][1]]
for i in range(1, len(fragments)):
tot_vocal_duration.append(tot_vocal_duration[i - 1] + fragments[i][1])
# 计算出任意两段之间非人声占比
for i in range(0, len(fragments)):
if fragments[i][1] >= 3:
now_tot = 0
if i > 0:
now_tot = tot_vocal_duration[i - 1]
for j in range(i + 1, len(fragments)):
cur_rate = tot_vocal_duration[j] - now_tot
cur_rate = cur_rate / (fragments[j][1] + fragments[j][0] - fragments[i][0])
if cur_rate > 0.1:
return fragments[i][0]
return -1
def inference_speaker(self):
"""
推理生成合成后的音频
随机取5个干声,选择占比最小的,并且要求占比小于0.3
:return:
"""
st = time.time()
out_speakers = random.sample(self.speakers, 15)
out_songs_dict = {}
for speaker in out_speakers:
model_path = self.speakers_model_path.format(speaker)
config_path = self.speakers_model_config.format(speaker)
song_path = os.path.join(self.cache_dir, "{}_{}.wav".format(self.cid, speaker))
try:
inf(model_path, config_path, self.vocal_32_path, song_path, "prod")
except Exception as ex:
logging.info("cid={}, inference_speaker err={}".format(self.cid, ex))
continue
if os.path.exists(song_path):
if self.replace_vocal_frame_inst is None:
self.replace_vocal_frame_inst = ReplaceVocalFrame(
"data/models/split_dirty_frame_v5_3_epoch3_852.pth")
rate = self.replace_vocal_frame_inst.get_rate(song_path)
if rate < 0.3:
out_songs_dict[song_path] = rate
# 从内部选择占比最低的
out_songs = []
if len(out_songs_dict.keys()) > 0:
st_sec = self.get_start_ms(self.vocal_path)
song_msg = sorted(out_songs_dict.items(), key=lambda kv: kv[1])[0]
out_songs = [song_msg[0]]
logging.info("GetRate:cid={},song={},rate={},st_tm={}".format(self.cid, song_msg[0], round(song_msg[1], 2),
round(st_sec, 3)))
print("GetRate:cid={},song={},rate={},st_tm={}".format(self.cid, song_msg[0], round(song_msg[1], 2),
round(st_sec, 3)))
# logging.info("inference_speaker len = {} finish sp = {}".format(len(out_songs), time.time() - st))
print("inference_speaker len = {} finish sp = {}".format(len(out_songs), time.time() - st))
return out_songs
def get_new_vocal_rate(self, songs):
"""
获取人声的比率
:param songs:
:return:
"""
st = time.time()
need_to_process_song = []
for song in songs:
if self.replace_vocal_frame_inst is None:
self.replace_vocal_frame_inst = ReplaceVocalFrame("data/models/split_dirty_frame_v5_3_epoch3_852.pth")
rate = self.replace_vocal_frame_inst.get_rate(song)
logging.info("{} {} replace_rate={}".format(self.cid, song, rate))
if rate < 1.0:
need_to_process_song.append(song)
logging.info(
"get_new_vocal_rate belen = {} len = {} finish sp = {}".format(len(songs), len(need_to_process_song),
time.time() - st))
return need_to_process_song
def preprocess_vocal(self, songs, vocal_path):
"""
1. 降噪
2. 拉伸
:param songs:
:param vocal_path: 参考的音频信号
:return:
"""
st = time.time()
dv_out_list = []
for song in songs:
denoise_path = str(song).replace(".wav", "_d.wav")
cmd = "{} {} {}".format(gs_denoise_exe, song, denoise_path)
os.system(cmd)
if not os.path.exists(denoise_path):
print("{} {} ERROR denoise".format(self.cid, song))
continue
# 拉伸
volume_path = str(song).replace(".wav", "_dv.wav")
cmd = "{} {} {} {}".format(gs_draw_volume_exe, denoise_path, vocal_path, volume_path)
os.system(cmd)
if not os.path.exists(volume_path):
print("{} {} ERROR denoise".format(self.cid, volume_path))
continue
dv_out_list.append(volume_path)
print(
"preprocess_vocal belen = {} len = {} finish sp = {}".format(len(songs), len(dv_out_list),
time.time() - st))
return dv_out_list
def output(self, dv_out_list):
"""
对外输出数据
:param dv_out_list:
:return:
"""
st = time.time()
out_dir = os.path.join(self.work_dir, self.cid)
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
# 拷贝数据
dst_mp3_path = os.path.join(out_dir, "src_mp3")
dst_acc_path = os.path.join(out_dir, "acc.mp3")
dst_vocal_path = os.path.join(out_dir, "vocal.mp3")
shutil.copyfile(self.src_mp3, dst_mp3_path)
cmd = "ffmpeg -i {} -ab 320k -y {} -loglevel fatal".format(self.acc_path, dst_acc_path)
os.system(cmd)
if not os.path.exists(dst_acc_path):
return gs_err_code_encode_err
cmd = "ffmpeg -i {} -ab 320k -y {} -loglevel fatal".format(self.vocal_path, dst_vocal_path)
os.system(cmd)
if not os.path.exists(dst_vocal_path):
return gs_err_code_encode_err
# 将所有数据放到out_dir中,用于给人工标注
for dv_wav in dv_out_list:
dv_wav_name = str(dv_wav).split("/")[-1].replace(".wav", "_441.mp3")
dst_dv_path = os.path.join(out_dir, dv_wav_name)
cmd = "ffmpeg -i {} -ar 44100 -ac 1 -ab 320k -y {} -loglevel fatal".format(dv_wav, dst_dv_path)
os.system(cmd)
if not os.path.exists(dst_dv_path):
print("{} encode err!".format(cmd))
continue
logging.info(
"preprocess_vocal output sp = {}".format(time.time() - st))
def process_one(self, cid, work_dir, enable_output=False):
logging.info("\nstart:cid={},work_dir={}----------------------->>>>>>>>".format(cid, work_dir))
self.cid = cid
self.work_dir = work_dir
# 所有不对外交付的,全部放到这里
self.cache_dir = os.path.join(work_dir, "cache")
if os.path.exists(self.cache_dir):
shutil.rmtree(self.cache_dir)
os.makedirs(self.cache_dir)
self.src_mp3 = os.path.join(self.work_dir, "src.mp3")
if not os.path.exists(self.src_mp3):
return gs_err_code_no_src_mp3
self.vocal_path = os.path.join(self.cache_dir, "vocal.wav")
self.vocal_32_path = os.path.join(self.cache_dir, "vocal_32.wav")
self.acc_path = os.path.join(self.cache_dir, "acc.wav")
if not os.path.exists(self.vocal_32_path):
logging.info("start separate ... {} {} {}".format(self.src_mp3, self.vocal_path, self.acc_path))
err = self.separate(cid, self.src_mp3, self.vocal_path, self.acc_path)
if err != gs_err_code_success:
return err, None, None
logging.info("start inference_speaker ...")
out_songs = self.inference_speaker()
dv_out_list = self.preprocess_vocal(out_songs, self.vocal_path)
if len(dv_out_list) == 0:
return gs_err_code_no_good_choice, None, None
mix_mp3_path = None
gender = -1
if enable_output:
self.output(dv_out_list)
else:
# 默认全部处理一遍
for dv_out_path in dv_out_list:
src_path = dv_out_path.replace("_dv.wav", ".wav")
err, mix_mp3_path = self.after_process(self.cid, self.work_dir, src_path, dv_out_path, self.vocal_path,
self.acc_path,
True, False)
if err != gs_err_code_success:
logging.info("after_process err {}".format(err))
# 取出性别属性
if err == gs_err_code_success and mix_mp3_path is not None:
gender = self.speakers2gender[int(str(os.path.basename(mix_mp3_path)).split("_")[1])]
logging.info("finish:cid={},work_dir={}----------------------->>>>>>>>".format(cid, work_dir))
return gs_err_code_success, mix_mp3_path, gender
def reverb_by_vocal(self, file):
st = time.time()
file_442 = file.replace(".wav", "_442.wav")
if not os.path.exists(file_442):
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {}".format(file, file_442)
os.system(cmd)
if not os.path.exists(file_442):
return gs_err_code_trans2_442, None
file_dst = file.replace(".wav", "_442_dr.wav")
cmd = "{} {} {} {}".format(gs_rever_path, self.vocal_path, file_442, file_dst)
os.system(cmd)
if not os.path.exists(file_dst):
return gs_err_code_reverb, None
print("cid = {}, reverb_by_vocal sp={}".format(self.cid, time.time() - st))
return gs_err_code_success, file_dst
def after_process(self, cid, work_dir, in_file, effect_file, vocal_file, acc_file, need_draw=True,
need_reverb=True):
"""
后处理逻辑
将处理好的音频进行替换,然后和伴奏进行混合,最后进行编码
:return:
"""
if need_reverb:
# 抓取混响
err, effect_file = self.reverb_by_vocal(in_file)
if err != gs_err_code_success:
return err, None
if need_draw:
# 增加一个拉伸的步骤
volume_path = str(effect_file).replace(".wav", "_dv.wav")
cmd = "{} {} {} {}".format(gs_draw_volume_exe, effect_file, vocal_file, volume_path)
print(cmd)
os.system(cmd)
if not os.path.exists(volume_path):
print("{} {} ERROR draw volume".format(self.cid, volume_path))
return gs_err_code_volume_err, None
effect_file = volume_path
st = time.time()
self.cid = cid
self.work_dir = work_dir
self.src_mp3 = os.path.join(self.work_dir, "src.mp3")
if not os.path.exists(self.work_dir):
return gs_err_code_no_src_dir
self.replace_vocal_frame_inst.process(in_file, effect_file, vocal_file)
dst_path = effect_file + "_replace.wav"
if not os.path.exists(dst_path):
return gs_err_code_replace_err, None
print("replace_vocal_frame_inst sp = {}".format(time.time() - st))
# 转码
dst_path_442 = dst_path.replace("_replace.wav", "_replace442.wav")
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} -loglevel fatal".format(dst_path, dst_path_442)
os.system(cmd)
if not os.path.exists(dst_path_442):
return gs_err_code_replace_trans_err, None
# 合并转码后再做一次拉伸,保证响度
volume_path = str(dst_path_442).replace(".wav", "_dv.wav")
cmd = "{} {} {} {}".format(gs_draw_volume_exe, dst_path_442, vocal_file, volume_path)
print(cmd)
os.system(cmd)
if not os.path.exists(volume_path):
print("{} {} ERROR draw volume".format(self.cid, volume_path))
return gs_err_code_volume_err, None
dst_path_442 = volume_path
# 混合
mix_path = dst_path_442.replace("_replace442.wav", "_replace442_mix.wav")
cmd = "{} {} {} {}".format(gs_simple_mixer_path, dst_path_442, acc_file, mix_path)
print("{}".format(cmd))
os.system(cmd)
if not os.path.exists(mix_path):
return gs_err_code_mix_err, None
# 编码为mp3
output_dir = os.path.join(self.work_dir, self.cid + "_out")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
name = str(mix_path).replace("_replace442_mix.wav", "_replace442_mix.mp3").split("/")[-1]
mix_path_mp3 = os.path.join(output_dir, name)
cmd = "ffmpeg -i {} -ab 320k -y {} -loglevel fatal".format(mix_path, mix_path_mp3)
os.system(cmd)
if not os.path.exists(mix_path_mp3):
return gs_err_code_mix_transcode_err, None
# 拷贝src到output_dir
# shutil.copyfile(self.src_mp3, os.path.join(output_dir, "src.mp3"))
# logging.info("after_process sp = {}".format(time.time() - st))
return gs_err_code_success, mix_path_mp3
####################################新对外接口############################################################
def prepare_env(self, cid, work_dir, create_dir=False):
self.cid = cid
self.work_dir = work_dir
# 所有不对外交付的,全部放到这里
self.cache_dir = os.path.join(work_dir, "cache")
if create_dir:
if os.path.exists(self.cache_dir):
shutil.rmtree(self.cache_dir)
os.makedirs(self.cache_dir)
self.src_mp3 = os.path.join(self.work_dir, "src.mp3")
if not os.path.exists(self.src_mp3):
return gs_err_code_no_src_mp3
self.vocal_path = os.path.join(self.cache_dir, "vocal.wav")
self.vocal_32_path = os.path.join(self.cache_dir, "vocal_32.wav")
self.acc_path = os.path.join(self.cache_dir, "acc.wav")
return gs_err_code_success
def generate_svc_file(self, cid, work_dir):
"""
:param cid:
:param work_dir:
:return:err_code, 生成出的svc的文件名称
"""
err = self.prepare_env(cid, work_dir, create_dir=True)
if err != gs_err_code_success:
return err, None
# 音源分离
if not os.path.exists(self.vocal_32_path):
st = time.time()
err = self.separate(cid, self.src_mp3, self.vocal_path, self.acc_path)
logging.info("cid={},separate,sp={}".format(self.cid, time.time() - st))
if err != gs_err_code_success:
return err, None
# 生成svc,只保留一个最佳的
st = time.time()
out_songs = self.inference_speaker()
if len(out_songs) == 0:
return gs_err_code_no_good_choice, None
logging.info("cid={},inference_speaker,{},sp={}".format(self.cid, out_songs[0], time.time() - st))
return gs_err_code_success, out_songs[0]
def effect(self, cid, work_dir, svc_file):
st = time.time()
err = self.prepare_env(cid, work_dir)
if err != gs_err_code_success:
return err, None
logging.info("cid={},effect_and_mix,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 预处理人声
dv_out_list = self.preprocess_vocal([svc_file], self.vocal_path)
if len(dv_out_list) == 0:
return gs_err_code_preprocess_vocal, None
svc_file = dv_out_list[0]
# 做音效
st = time.time()
err, effect_file = self.reverb_by_vocal(svc_file)
if err != gs_err_code_success:
return err, None
logging.info("cid={},reverb_by_vocal,{},sp={}".format(self.cid, svc_file, time.time() - st))
return err, effect_file
def mix(self, cid, work_dir, svc_file, effect_file):
"""
做音效以及合并
:param cid:
:param work_dir:
:param svc_file:
:param effect_file:
:return: err_code, 完成的mp3文件
"""
st = time.time()
err = self.prepare_env(cid, work_dir)
if err != gs_err_code_success:
return err, None
logging.info("cid={},effect_and_mix,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 拉伸
st = time.time()
volume_path = str(effect_file).replace(".wav", "_dv.wav")
cmd = "{} {} {} {}".format(gs_draw_volume_exe, effect_file, self.vocal_path, volume_path)
os.system(cmd)
if not os.path.exists(volume_path):
print("{} {} ERROR draw volume".format(self.cid, volume_path))
return gs_err_code_volume_err, None
effect_file = volume_path
logging.info("cid={},draw_volume,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 替换
st = time.time()
try:
if self.replace_vocal_frame_inst is None:
self.replace_vocal_frame_inst = ReplaceVocalFrame("data/models/split_dirty_frame_v5_3_epoch3_852.pth")
self.replace_vocal_frame_inst.process(svc_file, effect_file, self.vocal_path)
except Exception as ex:
logging.info("{},replace_vocal_frame_inst, {}", self.cid, ex)
return gs_err_code_replace_except_err, None
dst_path = effect_file + "_replace.wav"
if not os.path.exists(dst_path):
return gs_err_code_replace_err, None
logging.info("cid={},replace_vocal_frame_inst,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 转码
st = time.time()
dst_path_442 = dst_path.replace("_replace.wav", "_replace442.wav")
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} -loglevel fatal".format(dst_path, dst_path_442)
os.system(cmd)
if not os.path.exists(dst_path_442):
return gs_err_code_replace_trans_err, None
logging.info("cid={},transcode,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 合并转码后再做一次拉伸,保证响度
st = time.time()
volume_path = str(dst_path_442).replace("_replace442.wav", "_replace442_dv.wav")
cmd = "{} {} {} {}".format(gs_draw_volume_exe, dst_path_442, self.vocal_path, volume_path)
os.system(cmd)
if not os.path.exists(volume_path):
print("{} {} ERROR draw volume".format(self.cid, volume_path))
return gs_err_code_volume_err, None
dst_path_442 = volume_path
logging.info("cid={},draw_volume2,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 混合
st = time.time()
mix_path = dst_path_442.replace("_replace442_dv.wav", "_replace442_dv_mix.wav")
cmd = "{} {} {} {}".format(gs_simple_mixer_path, dst_path_442, self.acc_path, mix_path)
os.system(cmd)
if not os.path.exists(mix_path):
return gs_err_code_mix_err, None
logging.info("cid={},mixer,{},sp={}".format(self.cid, svc_file, time.time() - st))
# 编码为mp3
st = time.time()
output_dir = os.path.join(self.work_dir, self.cid + "_out")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
name = str(mix_path).replace("_replace442_dv_mix.wav", "_replace442_dv_mix.mp3").split("/")[-1]
mix_path_mp3 = os.path.join(output_dir, name)
cmd = "ffmpeg -i {} -ab 320k -y {} -loglevel fatal".format(mix_path, mix_path_mp3)
print(cmd)
os.system(cmd)
if not os.path.exists(mix_path_mp3):
return gs_err_code_mix_transcode_err, None
logging.info("cid={},encode,{},sp={}".format(self.cid, svc_file, time.time() - st))
return gs_err_code_success, mix_path_mp3
def get_gender(self, svc_file):
return self.speakers2gender[int(os.path.basename(svc_file.replace(".wav", "")).split("_")[1])]
def process_one_logic(self, cid, work_dir):
"""
搞成两部分:
1. 分离数据+5次推理,获取最佳结果,并保存
2. 利用最佳结果做音效以及合并
:return:
"""
err, svc_file = self.generate_svc_file(cid, work_dir)
gender = -1
if err != gs_err_code_success:
return err, svc_file, gender,
gender = self.get_gender(svc_file)
err, effect_file = self.effect(cid, work_dir, svc_file)
if err != gs_err_code_success:
return err, svc_file, gender
err, mix_mp3_path = self.mix(cid, work_dir, svc_file, effect_file)
return err, mix_mp3_path, gender
def test():
arr = [
# "611752105020343687",
# "611752105023532439",
# "611752105030419688",
# "611752105030485748",
# "611752105030485685",
"dzq",
]
base_dir = "/data/rsync/jianli.yang/AutoCoverTool/data/test"
s_inst = SongCoverInference()
for cid in arr:
st = time.time()
# err, mix_mp3, gender = s_inst.process_one(cid, os.path.join(base_dir, cid), False)
err, mix_mp3, gender = s_inst.process_one_logic(cid, os.path.join(base_dir, cid))
print(mix_mp3, gender)
print("cid={} RealFinish err={} sp={}".format(cid, err, time.time() - st))
def test_gene_svc():
base_dir = "/data/rsync/jianli.yang/AutoCoverTool/data/test"
+ # cid = "clean_yibo"
cid = "dzq"
work_dir = os.path.join(base_dir, cid)
st = time.time()
- speaker = "1125899914308640"
+ speaker = "1125899914308640_v1"
speakers_model_path = "data/train_users/{}/logs/32k/G_2000.pth"
speakers_model_config = "data/train_users/{}/config/config.json"
model_path = speakers_model_path.format(speaker)
config_path = speakers_model_config.format(speaker)
# 缓存目录:
cache_dir = os.path.join(work_dir, "cache")
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
os.makedirs(cache_dir)
song_path = os.path.join(cache_dir, "{}_{}.wav".format(cid, speaker))
vocal_path = os.path.join(work_dir, "vocal_32.wav")
inf(model_path, config_path, vocal_path, song_path, "prod")
print("finish....")
if __name__ == '__main__':
test_gene_svc()
diff --git a/AutoCoverTool/online/tone_shift_one.py b/AutoCoverTool/online/tone_shift_one.py
index cd9e556..585ed35 100644
--- a/AutoCoverTool/online/tone_shift_one.py
+++ b/AutoCoverTool/online/tone_shift_one.py
@@ -1,223 +1,232 @@
"""
变调的方式做处理
1. 下载
2. 分离
3. 针对于人声变调+2,伴奏+1
4. 合成
"""
import os
import json
import shutil
import librosa
import logging
import numpy as np
from ref.music_remover.separate_interface import SeparateInterface
from online.inference_worker import upload_file2cos, gs_state_use, gs_state_finish, gs_state_default
from online.common import *
logging.basicConfig(filename='/tmp/tone_shift_one.log', level=logging.INFO)
gs_tone_shift_exe = "/opt/soft/bin/tone_shift_exe"
gs_simple_mixer_path = "/opt/soft/bin/simple_mixer"
gs_err_code_success = 0
gs_err_code_tone_shift = 1
gs_err_code_mix = 2
gs_err_code_transcode = 3
gs_err_code_upload = 4
gs_err_code_download = 5
gs_err_code_trans_to_mp3 = 6
gs_err_code_separate = 7
gs_err_code_duration_too_long = 8
gs_err_code_duration_no_vocal = 9
gs_err_code_duration_err = 10
def exec_cmd(cmd):
r = os.popen(cmd)
text = r.read()
r.close()
return text
def get_d(audio_path):
cmd = "ffprobe -v quiet -print_format json -show_format -show_streams {}".format(audio_path)
data = exec_cmd(cmd)
data = json.loads(data)
# 返回秒
if 'format' in data.keys() and 'duration' in data['format']:
return float(data["format"]["duration"])
return -1
def get_mean_power(audio_path):
sr = 44100
audio, sr = librosa.load(audio_path, sr=sr, mono=True)
mm = np.mean(np.abs(audio))
return mm
class ToneShift:
def __init__(self):
self.separate_inst = SeparateInterface()
def update_state(self, song_id, state):
sql = "update svc_queue_table set state={},update_time={} where song_id = {}". \
format(state, int(time.time()), song_id)
banned_user_map['db'] = "av_db"
update_db(sql, banned_user_map)
+ def get_url_by_id(self, song_id):
+ sql = "select song_id, url from svc_queue_table where song_id={}".format(song_id)
+ banned_user_map["db"] = "av_db"
+ data = get_data_by_mysql(sql)
+ if len(data) == 0:
+ return None, None
+ return str(data[0][0]), data[0][1]
+
def get_one_data(self):
sql = "select song_id, url from svc_queue_table where state = 0 and song_src=3 order by create_time desc limit 1"
banned_user_map["db"] = "av_db"
data = get_data_by_mysql(sql, banned_user_map)
if len(data) == 0:
return None, None
song_id, song_url = data[0]
if song_id != "":
self.update_state(song_id, gs_state_use)
return str(song_id), song_url
def pre_process(self, work_dir, song_url):
"""
创建文件夹,下载数据
:return:
"""
if "?sign=" in song_url:
return gs_err_code_download
ext = str(song_url).split(".")[-1]
dst_file = "{}/src_origin.{}".format(work_dir, ext)
cmd = "wget {} -O {}".format(song_url, dst_file)
os.system(cmd)
if not os.path.exists(dst_file):
return gs_err_code_download
duration = get_d(dst_file)
if duration < 0:
return gs_err_code_duration_err
print("Duration:", dst_file, duration)
if duration > 20 * 60:
return gs_err_code_duration_too_long
dst_mp3_file = "{}/src.mp3".format(work_dir)
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} ".format(dst_file, dst_mp3_file)
os.system(cmd)
if not os.path.exists(dst_mp3_file):
return gs_err_code_trans_to_mp3
return gs_err_code_success
def tone_shift_one(self, in_file, dst_file, pitch):
cmd = "{} {} {} {}".format(gs_tone_shift_exe, in_file, dst_file, pitch)
os.system(cmd)
return os.path.exists(dst_file)
def mix(self, cid, vocal_path, acc_path, tp):
if tp == 1:
vocal_pitch = 2
acc_pitch = 0
else:
vocal_pitch = -2
acc_pitch = 0
vocal_path_2 = vocal_path.replace(".wav", "_{}.wav".format(vocal_pitch))
acc_path_2 = acc_path.replace(".wav", "_{}.wav".format(acc_pitch))
err = self.tone_shift_one(vocal_path, vocal_path_2, vocal_pitch)
if not err:
return gs_err_code_tone_shift, None
err = self.tone_shift_one(acc_path, acc_path_2, acc_pitch)
if not err:
return gs_err_code_tone_shift, None
base_dir = os.path.dirname(vocal_path)
mix_path = "{}/mix_{}_{}.wav".format(base_dir, vocal_pitch, acc_pitch)
cmd = "{} {} {} {}".format(gs_simple_mixer_path, vocal_path_2, acc_path_2, mix_path)
print("exec_cmd={}".format(cmd))
os.system(cmd)
if not os.path.exists(mix_path):
return gs_err_code_mix, None
# 转码
mix_path_mp3 = mix_path.replace(".wav", ".mp3")
cmd = "ffmpeg -i {} -ab 320k -y {} -loglevel fatal".format(mix_path, mix_path_mp3)
os.system(cmd)
if not os.path.exists(mix_path_mp3):
return gs_err_code_transcode, None
# 上传到cos
mix_name = os.path.basename(mix_path_mp3)
key = "av_res/svc_res_tone_shift/{}/{}".format(str(cid), mix_name)
if not upload_file2cos(key, mix_path_mp3):
return gs_err_code_upload, None
return gs_err_code_success, key
def process_one(self, cid, work_dir):
"""
:param cid:
:param work_dir:
:return:
"""
src_mp3 = os.path.join(work_dir, "src.mp3")
vocal_path = os.path.join(work_dir, "vocal.wav")
acc_path = os.path.join(work_dir, "acc.wav")
if not self.separate_inst.process(cid, src_mp3, vocal_path, acc_path):
return gs_err_code_separate, []
if not os.path.exists(vocal_path) or not os.path.exists(acc_path):
return gs_err_code_separate, []
# 当人声的平均能量小于一定值时,则认为无人声(0.01是经验值判定,样本分析来看)
# 无人声的样本[0.0056, 0.0003], 有人声的样本(目前最小)[0.046, 0.049]
print("power:{},{}".format(cid, get_mean_power(vocal_path)))
if get_mean_power(vocal_path) < 0.02:
return gs_err_code_duration_no_vocal, []
err, type1_mix_mp3 = self.mix(cid, vocal_path, acc_path, 1)
if err != gs_err_code_success:
return err, []
err, type2_mix_mp3 = self.mix(cid, vocal_path, acc_path, 2)
if err != gs_err_code_success:
return err, []
return gs_err_code_success, [type1_mix_mp3, type2_mix_mp3]
def process_worker(self):
logging.info("start process_worker .....")
base_dir = "/tmp/tone_shift_one"
if not os.path.exists(base_dir):
os.makedirs(base_dir)
while True:
worker_st = time.time()
cid, song_url = self.get_one_data()
+ # cid, song_url = self.get_url_by_id('611752105022612883')
if cid is None:
time.sleep(5)
logging.info("get one data is None ...")
continue
work_dir = os.path.join(base_dir, str(cid))
if os.path.exists(work_dir):
shutil.rmtree(work_dir)
os.makedirs(work_dir)
err = self.pre_process(work_dir, song_url)
if err != gs_err_code_success:
self.update_state(str(cid), -err)
continue
st = time.time()
err, data = self.process_one(str(cid), work_dir)
logging.info("process_finish,{},{}".format(cid, time.time() - st))
if err == gs_err_code_success and len(data) == 2:
sql = "update svc_queue_table set state={},update_time={},svc_url=\"{}\" where song_id = {}". \
format(gs_state_finish, int(time.time()), ",".join(data), str(cid))
banned_user_map['db'] = "av_db"
update_db(sql, banned_user_map)
else:
self.update_state(str(cid), -err)
shutil.rmtree(work_dir)
logging.info("process_finish,{},{}".format(cid, time.time() - worker_st))
if __name__ == '__main__':
ts = ToneShift()
ts.process_worker()
diff --git a/AutoCoverTool/ref/so_vits_svc/data_utils.py b/AutoCoverTool/ref/so_vits_svc/data_utils.py
index 1f5d4e2..25e84a8 100644
--- a/AutoCoverTool/ref/so_vits_svc/data_utils.py
+++ b/AutoCoverTool/ref/so_vits_svc/data_utils.py
@@ -1,154 +1,157 @@
import time
import os
import random
import numpy as np
import torch
import torch.utils.data
import commons
from mel_processing import spectrogram_torch, spec_to_mel_torch
from utils import load_wav_to_torch, load_filepaths_and_text, transform
# import h5py
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.spec_len = hparams.train.max_speclen
self.spk_map = hparams.spk
random.seed(1234)
random.shuffle(self.audiopaths)
def get_audio(self, filename):
filename = filename.replace("\\", "/")
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
spk = filename.split("/")[-2]
spk = torch.LongTensor([self.spk_map[spk]])
- c = torch.load(filename + ".soft.pt").squeeze(0)
- c = torch.repeat_interleave(c, repeats=2, dim=1)
+ c = torch.load(filename + ".soft.pt").squeeze(0) # shape=(256, frame_num/2)
+ c = torch.repeat_interleave(c, repeats=2, dim=1) # shape=(256, frame_num)
f0 = np.load(filename + ".f0.npy")
f0 = torch.FloatTensor(f0)
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
+ # 当assert的前面的条件不成立的时候,会报错,并给出后面的信息
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
audio_norm = audio_norm[:, :lmin * self.hop_length]
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
+ # 取幅度谱特征,hubert特征、f0信息
while spec.size(-1) < self.spec_len:
spec = torch.cat((spec, _spec), -1)
c = torch.cat((c, _c), -1)
f0 = torch.cat((f0, _f0), -1)
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
start = random.randint(0, spec.size(-1) - self.spec_len)
end = start + self.spec_len
spec = spec[:, start:end]
c = c[:, start:end]
f0 = f0[start:end]
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
+ # hubert特征,f0,幅度谱特征,对应音频段波形,人声编码
return c, f0, spec, audio_norm, spk
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
class EvalDataLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.audiopaths = self.audiopaths[:5]
self.spk_map = hparams.spk
def get_audio(self, filename):
filename = filename.replace("\\", "/")
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
spk = filename.split("/")[-2]
spk = torch.LongTensor([self.spk_map[spk]])
c = torch.load(filename + ".soft.pt").squeeze(0)
c = torch.repeat_interleave(c, repeats=2, dim=1)
f0 = np.load(filename + ".f0.npy")
f0 = torch.FloatTensor(f0)
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
audio_norm = audio_norm[:, :lmin * self.hop_length]
return c, f0, spec, audio_norm, spk
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
diff --git a/AutoCoverTool/ref/so_vits_svc/models.py b/AutoCoverTool/ref/so_vits_svc/models.py
index bdbce84..09c4045 100644
--- a/AutoCoverTool/ref/so_vits_svc/models.py
+++ b/AutoCoverTool/ref/so_vits_svc/models.py
@@ -1,351 +1,352 @@
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F
import attentions
import commons
import modules
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from commons import init_weights, get_padding
from vdecoder.hifigan.models import Generator
from utils import f0_to_coarse
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class Encoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
# print(x.shape,x_lengths.shape)
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class TextEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
filter_channels=None,
n_heads=None,
p_dropout=None):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
self.f0_emb = nn.Embedding(256, hidden_channels)
self.enc_ = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
def forward(self, x, x_lengths, f0=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = x + self.f0_emb(f0).transpose(1,2)
x = self.enc_(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2,3,5,7,11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SpeakerEncoder(torch.nn.Module):
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
super(SpeakerEncoder, self).__init__()
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels)
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
mel_slices = []
for i in range(0, total_frames-partial_frames, partial_hop):
mel_range = torch.arange(i, i+partial_frames)
mel_slices.append(mel_range)
return mel_slices
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
mel_len = mel.size(1)
last_mel = mel[:,-partial_frames:]
if mel_len > partial_frames:
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
mels = list(mel[:,s] for s in mel_slices)
mels.append(last_mel)
mels = torch.stack(tuple(mels), 0).squeeze(1)
with torch.no_grad():
partial_embeds = self(mels)
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
#embed = embed / torch.linalg.norm(embed, 2)
else:
with torch.no_grad():
embed = self(last_mel)
return embed
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels,
ssl_dim,
n_speakers,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.ssl_dim = ssl_dim
self.emb_g = nn.Embedding(n_speakers, gin_channels)
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
hps = {
"sampling_rate": 32000,
"inter_channels": 192,
"resblock": "1",
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"upsample_rates": [10, 8, 2, 2],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [16, 16, 4, 4],
"gin_channels": 256,
}
self.dec = Generator(h=hps)
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
def forward(self, c, f0, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
+ # hubert特征, f0, 幅度谱特征, 说话人id,mel谱特征
if c_lengths == None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
if spec_lengths == None:
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
g = self.emb_g(g).transpose(1,2)
z_ptemp, m_p, logs_p, _ = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
z_p = self.flow(z, spec_mask, g=g)
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
# o = self.dec(z_slice, g=g)
o = self.dec(z_slice, g=g, f0=pitch_slice)
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
def infer(self, c, f0, g=None, mel=None, c_lengths=None):
if c_lengths == None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
g = self.emb_g(g).transpose(1,2)
z_p, m_p, logs_p, c_mask = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
z = self.flow(z_p, c_mask, g=g, reverse=True)
o = self.dec(z * c_mask, g=g, f0=f0)
return o
diff --git a/AutoCoverTool/ref/so_vits_svc/train.py b/AutoCoverTool/ref/so_vits_svc/train.py
index 152bb59..3d62850 100644
--- a/AutoCoverTool/ref/so_vits_svc/train.py
+++ b/AutoCoverTool/ref/so_vits_svc/train.py
@@ -1,283 +1,301 @@
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import json
import argparse
import itertools
import math
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
import commons
import utils
from data_utils import TextAudioSpeakerLoader, EvalDataLoader
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (
kl_loss,
generator_loss, discriminator_loss, feature_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
torch.backends.cudnn.benchmark = True
global_step = 0
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
+ print("CurRank:===>", rank)
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
+ # 从每段音频文件中获取特征
+ # hubert特征,f0,幅度谱特征,对应音频段波形(384 * hop_length),人声编码[0],每一次获取3840ms长度的特征
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
batch_size=hps.train.batch_size)
if rank == 0:
eval_dataset = EvalDataLoader(hps.data.validation_files, hps)
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
batch_size=1, pin_memory=False,
drop_last=False)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank])
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d)
global_step = (epoch_str - 1) * len(train_loader)
print("load checkpoint ok !")
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, items in enumerate(train_loader):
+ # hubert特征,f0,幅度谱特征,对应音频段波形(384 * hop_length),人声编码[0]
c, f0, spec, y, spk = items
g = spk.cuda(rank, non_blocking=True)
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
c = c.cuda(rank, non_blocking=True)
f0 = f0.cuda(rank, non_blocking=True)
+ """
+ "sampling_rate": 32000,
+ "filter_length": 1280,
+ "hop_length": 320,
+ "win_length": 1280,
+ "n_mel_channels": 80,
+ "mel_fmin": 0.0,
+ "mel_fmax": null
+ """
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
with autocast(enabled=hps.train.fp16_run):
+ # net_g的输入: hubert特征,f0,幅度谱特征,说话人id,mel谱特征
+ # net_g的输出: y_hat = [波形信息]
y_hat, ids_slice, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(c, f0, spec, g=g, mel=mel)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
+ # mel谱之间的损失函数,后面是系数,误差越小越好
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
+ #
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
global_step += 1
+ logger.info('Debug..... ====> Epoch: {},{}'.format(epoch, global_step))
if rank == 0:
logger.info('====> Epoch: {},{}'.format(epoch, global_step))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with torch.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk = items
g = spk[:1].cuda(0)
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
c = c[:1].cuda(0)
f0 = f0[:1].cuda(0)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat = generator.module.infer(c, f0, g=g, mel=mel)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({
f"gen/audio_{batch_idx}": y_hat[0],
f"gt/audio_{batch_idx}": y[0]
})
image_dict.update({
f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()
diff --git a/AutoCoverTool/ref/so_vits_svc/utils.py b/AutoCoverTool/ref/so_vits_svc/utils.py
index 9eb9679..d7e3c4f 100644
--- a/AutoCoverTool/ref/so_vits_svc/utils.py
+++ b/AutoCoverTool/ref/so_vits_svc/utils.py
@@ -1,360 +1,366 @@
import os
import glob
import re
import sys
import argparse
import logging
import json
import subprocess
import librosa
import numpy as np
import torchaudio
from scipy.io.wavfile import read
import torch
import torchvision
from torch.nn import functional as F
from commons import sequence_mask
from hubert import hubert_model
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
def f0_to_coarse(f0):
+ """
+ 将f0按照Log10的级别进行区分,最后归一化到[1-255] 之间
+ :param f0:
+ :return:
+ """
is_torch = isinstance(f0, torch.Tensor)
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
+ # np.rint() 四舍五入取整
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
return f0_coarse
def get_hubert_model(rank=None):
hubert_soft = hubert_model.hubert_soft("data/models/hubert-soft-0d54a1f4.pt")
if rank is not None:
hubert_soft = hubert_soft.cuda(rank)
return hubert_soft
def get_hubert_content(hmodel, y=None, path=None):
if path is not None:
source, sr = torchaudio.load(path)
source = torchaudio.functional.resample(source, sr, 16000)
if len(source.shape) == 2 and source.shape[1] >= 2:
source = torch.mean(source, dim=0).unsqueeze(0)
else:
source = y
source = source.unsqueeze(0)
with torch.inference_mode():
units = hmodel.units(source)
return units.transpose(1, 2)
def get_content(cmodel, y):
with torch.no_grad():
c = cmodel.extract_features(y.squeeze(1))[0]
c = c.transpose(1, 2)
return c
def transform(mel, height): # 68-92
# r = np.random.random()
# rate = r * 0.3 + 0.85 # 0.85-1.15
# height = int(mel.size(-2) * rate)
tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
if height >= mel.size(-2):
return tgt[:, :mel.size(-2), :]
else:
silence = tgt[:, -1:, :].repeat(1, mel.size(-2) - height, 1)
silence += torch.randn_like(silence) / 10
return torch.cat((tgt, silence), 1)
def stretch(mel, width): # 0.5-2
return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
def load_checkpoint(checkpoint_path, model, optimizer=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if iteration is None:
iteration = 1
if learning_rate is None:
learning_rate = 0.0002
if optimizer is not None and checkpoint_dict['optimizer'] is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
logger.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
clean_ckpt = False
if clean_ckpt:
clean_checkpoints(path_to_models='logs/32k/', n_ckpts_to_keep=3, sort_by_time=True)
def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
sort_key = time_key if sort_by_time else name_key
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
key=sort_key)
to_del = [os.path.join(path_to_models, fn) for fn in
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
del_routine = lambda x: [os.remove(x), del_info(x)]
rs = [del_routine(fn) for fn in to_del]
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True,
help='Model name')
parser.add_argument('-l', '--logs', type=str, required=True,
help='log Name')
args = parser.parse_args()
model_dir = os.path.join(args.logs, args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
diff --git a/AutoCoverTool/script/get_song_url.py b/AutoCoverTool/script/get_song_url.py
index 0c0cc8a..ab483db 100644
--- a/AutoCoverTool/script/get_song_url.py
+++ b/AutoCoverTool/script/get_song_url.py
@@ -1,143 +1,827 @@
"""
获取歌曲的地址
# song_src=2 是来源108和109的歌曲,未被洗过的
# song_src=1 是曲库给的
# song_src=3 # 用于轻变调的
"""
from script.common import *
from copy import deepcopy
from online.common import update_db
def get_url_by_song_id(song_id):
sql = "select task_url,starmaker_songid from silence where starmaker_songid = {} order by task_id desc limit 1".format(
song_id)
ban = deepcopy(banned_user_map)
ban["db"] = "starmaker_musicbook"
data = get_data_by_mysql(sql, ban)
if len(data) > 0:
return data[0][0]
return None
def process():
arr = [
- "611752105020282582",
- "611752105020293285",
- "611752105020293290",
- "611752105020317636",
- "611752105020323419",
- "611752105020323585",
- "611752105020325121",
- "611752105020325263",
- "611752105020325611",
- "611752105020334448",
- "611752105020336884",
- "611752105020336885",
- "611752105020336886",
- "611752105020336888",
- "611752105020336902",
- "611752105020336906",
- "611752105020336920",
- "611752105020336923",
- "611752105020336927",
- "611752105020336928",
- "611752105020336936",
- "611752105020336939",
- "611752105020336941",
- "611752105020336948",
- "611752105020336952",
- "611752105020336964",
- "611752105020336970",
- "611752105020336976",
- "611752105020351094",
- "611752105020351132",
- "611752105020351146",
- "611752105020351149",
- "611752105020356228",
- "611752105020394299",
- "611752105020414473",
- "611752105020414519",
- "611752105020417490",
- "611752105022614029",
- "611752105022614689",
- "611752105022647049",
- "611752105022647057",
- "611752105022647058",
+ "611752105020327762",
+ "611752105020332343",
+ "611752105020332580",
+ "611752105020382477",
+ "611752105020384960",
+ "611752105020390942",
+ "611752105020402448",
+ "611752105022612883",
+ "611752105022614531",
+ "611752105022647060",
+ "611752105022647065",
"611752105022647066",
- "611752105022647071",
- "611752105022731222",
- "611752105022735210",
- "611752105022736491",
- "611752105022745594",
- "611752105022765634",
- "611752105022765638",
- "611752105022769491",
- "611752105022773423",
- "611752105022777020",
- "611752105022839285",
- "611752105022840130",
- "611752105022840856",
- "611752105022841683",
- "611752105022911042",
- "611752105023177799",
- "611752105023288035",
- "611752105023301455"
+ "611752105022647079",
+ "611752105022704186",
+ "611752105022728482",
+ "611752105022728546",
+ "611752105022729259",
+ "611752105022729263",
+ "611752105022729268",
+ "611752105022731042",
+ "611752105022731053",
+ "611752105022731127",
+ "611752105022734755",
+ "611752105022736024",
+ "611752105022738473",
+ "611752105022739648",
+ "611752105022739650",
+ "611752105022740713",
+ "611752105022741712",
+ "611752105022743896",
+ "611752105022746068",
+ "611752105022746733",
+ "611752105022747108",
+ "611752105022753906",
+ "611752105022757968",
+ "611752105022763051",
+ "611752105022763880",
+ "611752105022763884",
+ "611752105022764224",
+ "611752105022764688",
+ "611752105022764801",
+ "611752105022765022",
+ "611752105022766341",
+ "611752105022767186",
+ "611752105022767294",
+ "611752105022768062",
+ "611752105022768419",
+ "611752105022768837",
+ "611752105022770004",
+ "611752105022770306",
+ "611752105022772154",
+ "611752105022773633",
+ "611752105022773776",
+ "611752105022774040",
+ "611752105022774127",
+ "611752105022774220",
+ "611752105022774502",
+ "611752105022775091",
+ "611752105022775486",
+ "611752105022775600",
+ "611752105022775907",
+ "611752105022775939",
+ "611752105022776719",
+ "611752105022776721",
+ "611752105022776761",
+ "611752105022776857",
+ "611752105022777051",
+ "611752105022777076",
+ "611752105022777120",
+ "611752105022777328",
+ "611752105022777496",
+ "611752105022777573",
+ "611752105022777600",
+ "611752105022777607",
+ "611752105022777608",
+ "611752105022777611",
+ "611752105022777835",
+ "611752105022778042",
+ "611752105022779020",
+ "611752105022779294",
+ "611752105022779784",
+ "611752105022780210",
+ "611752105022780284",
+ "611752105022780287",
+ "611752105022780345",
+ "611752105022780355",
+ "611752105022780818",
+ "611752105022780961",
+ "611752105022780965",
+ "611752105022781011",
+ "611752105022781144",
+ "611752105022781193",
+ "611752105022781267",
+ "611752105022781268",
+ "611752105022781374",
+ "611752105022781387",
+ "611752105022781807",
+ "611752105022782935",
+ "611752105022783480",
+ "611752105022783776",
+ "611752105022783967",
+ "611752105022784390",
+ "611752105022784996",
+ "611752105022785018",
+ "611752105022785313",
+ "611752105022785621",
+ "611752105022785681",
+ "611752105022812895",
+ "611752105022818025",
+ "611752105022823781",
+ "611752105022825467",
+ "611752105022835406",
+ "611752105022835415",
+ "611752105022835751",
+ "611752105022836470",
+ "611752105022837186",
+ "611752105022837452",
+ "611752105022837464",
+ "611752105022838205",
+ "611752105022838206",
+ "611752105022839030",
+ "611752105022839189",
+ "611752105022839975",
+ "611752105022840319",
+ "611752105022840550",
+ "611752105022840637",
+ "611752105022841089",
+ "611752105022841308",
+ "611752105022841355",
+ "611752105022842120",
+ "611752105022842184",
+ "611752105022842241",
+ "611752105022842989",
+ "611752105022843089",
+ "611752105022843139",
+ "611752105022843331",
+ "611752105022843710",
+ "611752105022843728",
+ "611752105022876795",
+ "611752105022973113",
+ "611752105023086347",
+ "611752105023091102",
+ "611752105023104185",
+ "611752105023162802",
+ "611752105023184121",
+ "611752105023219237",
+ "611752105023234496",
+ "611752105023246015",
+ "611752105023246857",
+ "611752105023258864",
+ "611752105023262008",
+ "611752105023301455",
+ "611752105023306231",
+ "611752105023329571",
+ "611752105023411931",
+ "611752105023449798",
+ "611752105023458990",
+ "611752105023610603",
+ "611752105023678577",
+ "611752105023683356",
+ "611752105023683357",
+ "611752105023725727",
+ "611752105023783626",
+ "611752105023841037",
+ "611752105023908922",
+ "611752105023929521",
+ "611752105024170140",
+ "611752105024183682",
+ "611752105024231227",
+ "611752105024415490",
+ "611752105024466658",
+ "611752105024618170",
+ "611752105024683212",
+ "611752105024728134",
+ "611752105024765795",
+ "611752105024766050",
+ "611752105025090763",
+ "611752105025188532",
+ "611752105025242121",
+ "611752105025348359",
+ "611752105025455871",
+ "611752105025458749",
+ "611752105025458753",
+ "611752105025458809",
+ "611752105025467555",
+ "611752105025475926",
+ "611752105025486355",
+ "611752105025492732",
+ "611752105025496983",
+ "611752105025503613",
+ "611752105025504662",
+ "611752105025506533",
+ "611752105025515144",
+ "611752105025520678",
+ "611752105025521388",
+ "611752105025524664",
+ "611752105025524932",
+ "611752105025526555",
+ "611752105025542775",
+ "611752105025542802",
+ "611752105025543710",
+ "611752105025555350",
+ "611752105025558173",
+ "611752105025565020",
+ "611752105025565029",
+ "611752105025565034",
+ "611752105025565044",
+ "611752105025578884",
+ "611752105025580424",
+ "611752105025581305",
+ "611752105025584544",
+ "611752105025720331",
+ "611752105025840622",
+ "611752105026003288",
+ "611752105026090255",
+ "611752105026110280",
+ "611752105026110299",
+ "611752105026110309",
+ "611752105026110320",
+ "611752105026110324",
+ "611752105026110363",
+ "611752105026110435",
+ "611752105026150525",
+ "611752105026152312",
+ "611752105026152320",
+ "611752105026180638",
+ "611752105026180797",
+ "611752105026205984",
+ "611752105026227884",
+ "611752105026343282",
+ "611752105026343284",
+ "611752105026388268",
+ "611752105026417620",
+ "611752105026449246",
+ "611752105026462848",
+ "611752105026465098",
+ "611752105026533365",
+ "611752105026533380",
+ "611752105026533386",
+ "611752105026533657",
+ "611752105026536897",
+ "611752105026536911",
+ "611752105026536913",
+ "611752105026577993",
+ "611752105026580839",
+ "611752105026614487",
+ "611752105026666894",
+ "611752105026666899",
+ "611752105026666904",
+ "611752105026666918",
+ "611752105026666950",
+ "611752105026666964",
+ "611752105026666995",
+ "611752105026667014",
+ "611752105026667025",
+ "611752105026716551",
+ "611752105026779831",
+ "611752105027030955",
+ "611752105027147459",
+ "611752105027186707",
+ "611752105027201043",
+ "611752105027216307",
+ "611752105027228689",
+ "611752105027228702",
+ "611752105027326105",
+ "611752105027460089",
+ "611752105027460125",
+ "611752105027484924",
+ "611752105027601574",
+ "611752105027648113",
+ "611752105027802526",
+ "611752105027854263",
+ "611752105028204403",
+ "611752105028408823",
+ "611752105028477541",
+ "611752105028507652",
+ "611752105028558157",
+ "611752105028593043",
+ "611752105028793344",
+ "611752105028815367",
+ "611752105028820643",
+ "611752105028820644",
+ "611752105028837845",
+ "611752105028858612",
+ "611752105028858622",
+ "611752105028878359",
+ "611752105028879009",
+ "611752105028916096",
+ "611752105028916098",
+ "611752105028975585",
+ "611752105028990740",
+ "611752105029006327",
+ "611752105029041707",
+ "611752105029047058",
+ "611752105029047269",
+ "611752105029054046",
+ "611752105029059915",
+ "611752105029090034",
+ "611752105029204262",
+ "611752105029272970",
+ "611752105029290667",
+ "611752105029291290",
+ "611752105029291293",
+ "611752105029291297",
+ "611752105029291304",
+ "611752105029306974",
+ "611752105029372452",
+ "611752105029432803",
+ "611752105029648535",
+ "611752105029648872",
+ "611752105029648891",
+ "611752105029788767",
+ "611752105029953987",
+ "611752105029954740",
+ "611752105029954853",
+ "611752105029955024",
+ "611752105029956615",
+ "611752105029990162",
+ "611752105029990799",
+ "611752105029991249",
+ "611752105030119229",
+ "611752105030146069",
+ "611752105030220820",
+ "611752105030228836",
+ "611752105030249168",
+ "611752105030249302",
+ "611752105030279605",
+ "61175210503042544",
+ "611752105030447267",
+ "611752105030449043",
+ "611752105030454452",
+ "611752105030470921",
+ "611752105030483301",
+ "611752105030483312",
+ "611752105030483313",
+ "611752105030483344",
+ "611752105030483414",
+ "611752105030483415",
+ "611752105030485565",
+ "611752105030485569",
+ "611752105030485602",
+ "611752105030485608",
+ "611752105030485620",
+ "611752105030485663",
+ "611752105030485711",
+ "611752105030485733",
+ "611752105030485745",
+ "611752105030485799",
+ "611752105030486000",
+ "611752105030486306",
+ "611752105030488510",
+ "611752105030488594",
+ "611752105030488665",
+ "611752105030488713",
+ "611752105030488727",
+ "611752105030488744",
+ "611752105030488814",
+ "611752105030488836",
+ "611752105030488852",
+ "611752105030488864",
+ "611752105030488880",
+ "611752105030488962",
+ "611752105030488997",
+ "611752105030489153",
+ "611752105030489354",
+ "611752105030489380",
+ "611752105030489394",
+ "611752105030489403",
+ "611752105030489415",
+ "611752105030494882",
+ "611752105030499117",
+ "611752105030499185",
+ "611752105030499265",
+ "611752105030499310",
+ "611752105030500582",
+ "611752105030501929",
+ "611752105030501994",
+ "611752105030502109",
+ "611752105030502463",
+ "611752105030503847",
+ "611752105030506310",
+ "611752105030507034",
+ "611752105030516849",
+ "611752105030517044",
+ "611752105030517093",
+ "611752105030532792",
+ "611752105030532858",
+ "611752105030532869",
+ "611752105030534180",
+ "611752105030534293",
+ "611752105030534503",
+ "611752105030535017",
+ "611752105030538184",
+ "611752105030544325",
+ "611752105030547499",
+ "611752105030547630",
+ "611752105030547632",
+ "611752105030547638",
+ "611752105030547849",
+ "611752105030547881",
+ "611752105030549919",
+ "611752105030554063",
+ "611752105030554076",
+ "611752105030556613",
+ "611752105030557261",
+ "611752105030557355",
+ "611752105030558647",
+ "611752105030558663",
+ "611752105030559471",
+ "611752105030559472",
+ "611752105030562192",
+ "611752105030562194",
+ "611752105030562196",
+ "611752105030562197",
+ "611752105030562199",
+ "611752105030562203",
+ "611752105030562205",
+ "611752105030562209",
+ "611752105030562211",
+ "611752105030562213",
+ "611752105030562214",
+ "611752105030562218",
+ "611752105030562221",
+ "611752105030562227",
+ "611752105030562228",
+ "611752105030562231",
+ "611752105030562234",
+ "611752105030562236",
+ "611752105030562239",
+ "611752105030562243",
+ "611752105030562245",
+ "611752105030562248",
+ "611752105030562251",
+ "611752105030562254",
+ "611752105030562255",
+ "611752105030562259",
+ "611752105030562262",
+ "611752105030562263",
+ "611752105030562266",
+ "611752105030562268",
+ "611752105030562271",
+ "611752105030562274",
+ "611752105030562277",
+ "611752105030562283",
+ "611752105030562286",
+ "611752105030562289",
+ "611752105030562291",
+ "611752105030562296",
+ "611752105030562302",
+ "611752105030562303",
+ "611752105030562306",
+ "611752105030562311",
+ "611752105030562314",
+ "611752105030562316",
+ "611752105030562322",
+ "611752105030562325",
+ "611752105030562327",
+ "611752105030562333",
+ "611752105030562335",
+ "611752105030562337",
+ "611752105030562338",
+ "611752105030562345",
+ "611752105030562351",
+ "611752105030562378",
+ "611752105030562380",
+ "611752105030562383",
+ "611752105030562386",
+ "611752105030562389",
+ "611752105030562391",
+ "611752105030562392",
+ "611752105030562397",
+ "611752105030562398",
+ "611752105030562399",
+ "611752105030562401",
+ "611752105030562404",
+ "611752105030562405",
+ "611752105030562411",
+ "611752105030562413",
+ "611752105030562414",
+ "611752105030562417",
+ "611752105030562419",
+ "611752105030562424",
+ "611752105030562425",
+ "611752105030562426",
+ "611752105030562428",
+ "611752105030562431",
+ "611752105030562448",
+ "611752105030562457",
+ "611752105030562459",
+ "611752105030562460",
+ "611752105030562463",
+ "611752105030562470",
+ "611752105030562472",
+ "611752105030562473",
+ "611752105030562483",
+ "611752105030562489",
+ "611752105030562493",
+ "611752105030562494",
+ "611752105030562499",
+ "611752105030562502",
+ "611752105030562504",
+ "611752105030562507",
+ "611752105030562512",
+ "611752105030562513",
+ "611752105030562517",
+ "611752105030562522",
+ "611752105030562919",
+ "611752105030562921",
+ "611752105030562924",
+ "611752105030562925",
+ "611752105030562929",
+ "611752105030562931",
+ "611752105030562936",
+ "611752105030562938",
+ "611752105030562939",
+ "611752105030562940",
+ "611752105030562943",
+ "611752105030562946",
+ "611752105030562950",
+ "611752105030562953",
+ "611752105030562954",
+ "611752105030562959",
+ "611752105030562960",
+ "611752105030562962",
+ "611752105030562968",
+ "611752105030562974",
+ "611752105030562978",
+ "611752105030562979",
+ "611752105030562981",
+ "611752105030562983",
+ "611752105030562986",
+ "611752105030562988",
+ "611752105030562999",
+ "611752105030563001",
+ "611752105030563003",
+ "611752105030563005",
+ "611752105030563006",
+ "611752105030563010",
+ "611752105030563014",
+ "611752105030563022",
+ "611752105030563025",
+ "611752105030563028",
+ "611752105030563031",
+ "611752105030563034",
+ "611752105030563035",
+ "611752105030563043",
+ "611752105030564818",
+ "611752105030568345",
+ "611752105030568348",
+ "611752105030578193",
+ "611752105030582372",
+ "611752105030590839",
+ "611752105030590840",
+ "611752105030590845",
+ "611752105030590847",
+ "611752105030595548",
+ "611752105030595730",
+ "611752105030597299",
+ "611752105030597505",
+ "611752105030605279",
+ "611752105030605833",
+ "611752105030606179",
+ "611752105030615341",
+ "611752105030617237",
+ "611752105030617286",
+ "611752105030617308",
+ "611752105030617321",
+ "611752105030617329",
+ "611752105030617332",
+ "611752105030617344",
+ "611752105030623889",
+ "611752105030623893",
+ "611752105030629479",
+ "611752105030629626",
+ "611752105030644584",
+ "611752105030644604",
+ "611752105030645910",
+ "611752105030645928",
+ "611752105030645939",
+ "611752105030645952",
+ "611752105030645965",
+ "611752105030645979",
+ "611752105030645993",
+ "611752105030646025",
+ "611752105030646052",
+ "611752105030646076",
+ "611752105030646106",
+ "611752105030646134",
+ "611752105030646147",
+ "611752105030647154",
+ "611752105030647258",
+ "611752105030647263",
+ "611752105030647335",
+ "611752105030647409",
+ "611752105030647439",
+ "611752105030647456",
+ "611752105030647469",
+ "611752105030647493",
+ "611752105030647496",
+ "611752105030647512",
+ "611752105030647526",
+ "611752105030647735",
+ "611752105030647850",
+ "611752105030647856",
+ "611752105030647863",
+ "611752105030649520",
+ "611752105030649525",
+ "611752105030649535",
+ "611752105030649557",
+ "611752105030649597",
+ "611752105030649603",
+ "611752105030649621",
+ "611752105030649627",
+ "611752105030649645",
+ "611752105030649647",
+ "611752105030649648",
+ "611752105030649650",
+ "611752105030649652",
+ "611752105030649657",
+ "611752105030649661",
+ "611752105030650191",
+ "611752105030650212",
+ "611752105030650762",
+ "611752105030650773",
+ "611752105030650788",
+ "611752105030650800",
+ "611752105030650807",
+ "611752105030652092",
+ "611752105030652107",
+ "611752105030652116",
+ "611752105030652135",
+ "611752105030652143",
+ "611752105030652148",
+ "611752105030652183",
+ "611752105030652188",
+ "611752105030652306",
+ "611752105030652522",
+ "611752105030652547",
+ "611752105030652554",
+ "611752105030652565",
+ "611752105030652580",
+ "611752105030652586",
+ "611752105030652606",
+ "611752105030652613",
+ "611752105030652619",
+ "611752105030652628",
+ "611752105030652635",
+ "611752105030652645",
+ "611752105030652657",
+ "611752105030652666",
+ "611752105030652675",
+ "611752105030652710",
+ "611752105030652734",
+ "611752105030652740",
+ "611752105030652759",
+ "611752105030652832",
+ "611752105030652843",
+ "611752105030652867",
+ "611752105030652890",
+ "611752105030652901",
+ "611752105030652955",
+ "611752105030652962",
+ "611752105030653015",
+ "611752105030653040",
+ "611752105030653077",
+ "611752105030653092",
+ "611752105030653100",
+ "611752105030653125",
+ "611752105030653141",
+ "611752105030653177",
+ "611752105030659127",
+ "611752105030659135",
+ "611752105030659138",
+ "611752105030659139",
+ "611752105030659140",
+ "611752105030659145",
+ "611752105030659146",
+ "611752105030659150",
+ "611752105030659157",
+ "611752105030659158",
+ "611752105030659160",
+ "611752105030659164",
+ "611752105030659167",
+ "611752105030659176",
+ "611752105030659178",
+ "611752105030659180",
+ "611752105030659183",
+ "611752105030659190",
+ "611752105030659197",
+ "611752105030659201",
+ "611752105030659205",
+ "611752105030659206",
+ "611752105030659210",
+ "611752105030659213",
+ "611752105030659214",
+ "611752105030659222",
+ "611752105030659228",
+ "611752105030659230",
+ "611752105030659235",
+ "611752105030659239",
+ "611752105030659241",
+ "611752105030659245",
+ "611752105030659247",
+ "611752105030659248",
+ "611752105030659249",
+ "611752105030659252",
+ "611752105030659253",
+ "611752105030659255",
+ "611752105030659259",
+ "611752105030659261",
+ "611752105030659263",
+ "611752105030659265",
+ "611752105030659266",
+ "611752105030659268",
+ "611752105030659271",
+ "611752105030659272",
+ "611752105030659275",
+ "611752105030659276",
+ "611752105030659279",
+ "611752105030659280",
+ "611752105030659285",
+ "611752105030659286",
+ "611752105030659287",
+ "611752105030659892",
+ "611752105030659898",
+ "611752105030659904",
+ "611752105030659907",
+ "611752105030659915",
+ "611752105030659923",
+ "611752105030659929",
+ "611752105030659936",
+ "611752105030659942",
+ "611752105030659957",
+ "611752105030659965",
+ "611752105030659974",
+ "611752105030659982",
+ "611752105030659986",
+ "611752105030659992",
+ "611752105030659998",
+ "611752105030660002",
+ "611752105030660009",
+ "611752105030660018",
+ "611752105030660030",
+ "611752105030660038",
+ "611752105030661242"
]
ban = deepcopy(banned_user_map)
ban["db"] = "av_db"
for sid in arr:
url = get_url_by_song_id(sid)
if url is not None:
print("out,{},{}".format(url, sid))
# 不在数据库中
- sql = "select song_id from svc_queue_table where song_id={}".format(sid)
- # data = get_data_by_mysql(sql, ban)
- # if len(data) == 0:
- tm = int(time.time())
- sql = "replace INTO svc_queue_table (song_id, url, create_time, update_time, song_src) VALUES ({}, \"{}\",{}, {}, 3)" \
- .format(sid, url, tm, tm)
- update_db(sql, ban)
+ sql = "select song_id from svc_queue_table where song_id={} and song_src=3".format(sid)
+ data = get_data_by_mysql(sql, ban)
+ if len(data) == 0:
+ tm = int(time.time())
+ sql = "replace INTO svc_queue_table (song_id, url, create_time, update_time, song_src) VALUES ({}, \"{}\",{}, {}, 3)" \
+ .format(sid, url, tm, tm)
+ update_db(sql, ban)
def get_data_from_song():
sql = """
select tb1.song_id, tb1.recording_count
from (
select song_id,recording_count
from starmaker.song
where song_src in (108,109) and song_status = 2
order by recording_count desc
) as tb1
left join
(
select song_id
from av_db.svc_queue_table
) as tb2
on tb1.song_id = tb2.song_id
where tb2.song_id is null
order by tb1.recording_count desc limit 1000
"""
ban = deepcopy(banned_user_map)
ban_v1 = deepcopy(banned_user_map)
ban["db"] = "starmaker_musicbook"
ban_v1["db"] = "av_db"
data = get_data_by_mysql(sql, ban)
for dt in data:
sid = dt[0]
url = get_url_by_song_id(sid)
if url is not None:
print("out,{},{}".format(url, sid))
tm = int(time.time())
- sql = "replace INTO svc_queue_table (song_id, url, create_time, update_time, song_src) VALUES ({}, \"{}\", {}, {}, 3)" \
+ sql = "insert INTO svc_queue_table (song_id, url, create_time, update_time, song_src) VALUES ({}, \"{}\", {}, {}, 3)" \
.format(sid, url, tm, tm)
update_db(sql, ban_v1)
if __name__ == '__main__':
# get_diff_song()
- # get_data_from_song()
- process()
+ get_data_from_song()
+ # process()

File Metadata

Mime Type
text/x-diff
Expires
Sun, Jan 12, 08:30 (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1347156
Default Alt Text
(109 KB)

Event Timeline