Page MenuHomePhabricator

No OneTemporary

diff --git a/AIMeiSheng/diffuse_fang/diffUse_wraper_double.py b/AIMeiSheng/diffuse_fang/diffUse_wraper_double.py
new file mode 100644
index 0000000..a958906
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffUse_wraper_double.py
@@ -0,0 +1,59 @@
+from diffuse_fang.diffusion.wavenet import WaveNet
+from diffuse_fang.diffusion.diffusion import GaussianDiffusion
+
+import torch
+
+out_dims = 256#192 ##决定输出维度
+n_layers=20
+n_chans=384
+n_hidden=256#192#256 ##决定输入维度
+timesteps=1000
+k_step_max=1000
+
+
+#class WaveNet(nn.Module):
+# def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
+
+###out: B x n_frames x feat, 推理的话returrn 目标数据,训练的时候return 是 mse loss
+#input size
+#output size:
+diff_decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden),timesteps=timesteps,k_step=k_step_max, out_dims=out_dims)
+
+'''
+gt_spec=None#这个是x0的数据,推理不需要,测试需要
+infer=True # train的时候设置成Fasle
+infer_speedup=10
+method='dpm-solver'
+k_step=100
+use_tqdm=True
+#'''
+
+class ddpm_para():
+ def __init__(self, gt_spec=None,infer=True,infer_speedup=10,method='dpm-solver',k_step=100,use_tqdm = True):
+ #self.use_tqdm = use_tqdm #True
+ self.gt_spec = gt_spec#None#这个是x0的数据,推理不需要,测试需要
+ self.infer = infer #True # train的时候设置成Fasle
+ self.infer_speedup = infer_speedup#10
+ self.method = method #'dpm-solver'
+ self.k_step = k_step
+ self.use_tqdm = use_tqdm
+
+
+if __name__ == "__main__":
+ ddpm_dp = ddpm_para()
+
+ B = 32
+ n_frames = 120
+ n_unit = 192
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ diff_decoder = diff_decoder.to(device)
+ x = torch.randn(B, n_frames,n_unit).to(device) ##input: B x n_frames x n_unit
+ print("@@@ input x shape:", x.shape)
+ # 生成标签数据(假设简单线性分类)
+ # Y = torch.randint(0, 2, (num_samples, output_dim)).float()
+
+ out = diff_decoder(x, gt_spec=ddpm_dp.gt_spec, infer=ddpm_dp.infer, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=ddpm_dp.k_step, use_tqdm=ddpm_dp.use_tqdm)
+ print("@@@ out shape:",out.shape) #torch.Size([32, 120, 128]) ###out: B x n_frames x feat
+
+
diff --git a/AIMeiSheng/docker_demo/common.py b/AIMeiSheng/docker_demo/common.py
index 9d0ebff..6d28a72 100644
--- a/AIMeiSheng/docker_demo/common.py
+++ b/AIMeiSheng/docker_demo/common.py
@@ -1,112 +1,112 @@
import os
import sys
import time
# import logging
import urllib, urllib.request
# 测试/正式环境
gs_prod = False
if len(sys.argv) > 1 and sys.argv[1] == "prod":
gs_prod = True
print(gs_prod)
gs_tmp_dir = "/tmp/ai_meisheng_tmp"
gs_model_dir = "/tmp/ai_meisheng_models"
gs_resource_cache_dir = "/tmp/ai_meisheng_resource_cache"
gs_embed_model_path = os.path.join(gs_model_dir, "RawNet3/models/weights/model.pt")
gs_svc_model_path = os.path.join(gs_model_dir,
- "weights/xusong_v2_org_version_alldata_embed_spkenx200x_vocal_e22_s95040.pth")
+ "weights/xusong_v2_org_version_alldata_embed_spkenx200x_double_e14_s90706.pth")
gs_hubert_model_path = os.path.join(gs_model_dir, "hubert.pt")
gs_rmvpe_model_path = os.path.join(gs_model_dir, "rmvpe.pt")
gs_embed_model_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/best_model.pth.tar")
gs_embed_config_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/config.json")
# errcode
gs_err_code_success = 0
gs_err_code_download_vocal = 100
gs_err_code_download_svc_url = 101
gs_err_code_svc_process = 102
gs_err_code_transcode = 103
gs_err_code_volume_adjust = 104
gs_err_code_upload = 105
gs_err_code_params = 106
gs_err_code_pending = 107
gs_err_code_target_silence = 108
gs_err_code_too_many_connections = 429
gs_redis_conf = {
"host": "av-credis.starmaker.co",
"port": 6379,
"pwd": "lKoWEhz%jxTO",
}
gs_server_redis_conf = {
"producer": "test_ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "test_ai_meisheng_key_", # 存储结果情况
}
if gs_prod:
gs_server_redis_conf = {
"producer": "ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "ai_meisheng_key_", # 存储结果情况
}
def download2disk(url, dst_path):
try:
urllib.request.urlretrieve(url, dst_path)
return os.path.exists(dst_path)
except Exception as ex:
print(f"download url={url} error", ex)
return False
def exec_cmd(cmd):
# gs_logger.info(cmd)
print(cmd)
ret = os.system(cmd)
if ret != 0:
return False
return True
def exec_cmd_and_result(cmd):
r = os.popen(cmd)
text = r.read()
r.close()
return text
def upload_file2cos(key, file_path, region='ap-singapore', bucket_name='av-audit-sync-sg-1256122840'):
"""
将文件上传到cos
:param key: 桶上的具体地址
:param file_path: 本地文件地址
:param region: 区域
:param bucket_name: 桶地址
:return:
"""
gs_coscmd = "coscmd"
gs_coscmd_conf = "~/.cos.conf"
cmd = "{} -c {} -r {} -b {} upload {} {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, file_path, key)
if exec_cmd(cmd):
cmd = "{} -c {} -r {} -b {} info {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, key) \
+ "| grep Content-Length |awk \'{print $2}\'"
res_str = exec_cmd_and_result(cmd)
# logging.info("{},res={}".format(key, res_str))
size = float(res_str)
if size > 0:
return True
return False
return False
def check_input(input_data):
key_list = ["record_song_url", "target_url", "start", "end", "vocal_loudness", "female_recording_url",
"male_recording_url"]
for key in key_list:
if key not in input_data.keys():
return False
return True
diff --git a/AIMeiSheng/lib/infer_pack/attentions_in_dec_double.py b/AIMeiSheng/lib/infer_pack/attentions_in_dec_double.py
new file mode 100644
index 0000000..6f5b23c
--- /dev/null
+++ b/AIMeiSheng/lib/infer_pack/attentions_in_dec_double.py
@@ -0,0 +1,424 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from lib.infer_pack import commons
+from lib.infer_pack import modules
+from lib.infer_pack.modules import LayerNorm,AdaIN1d,AdaIN2d
+
+g2_dim = 256
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ window_size=10,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ window_size=window_size,
+ )
+ )
+ #self.norm_layers_1.append(LayerNorm(hidden_channels))
+ #self.norm_layers_1.append(AdaIN1d(hidden_channels,256)) #fang add
+ self.norm_layers_1.append(AdaIN1d(256,g2_dim))#fang add
+ #print("xxxhidden_channels:",hidden_channels)
+ #print("xxxfilter_channels:",filter_channels)
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask,g):#fang add
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ #print("@@@ x:",x.shape) #fang add
+ #x = self.norm_layers_1[i](x + y)
+ #print("@@g:",g.shape)
+ x = self.norm_layers_1[i](x + y,torch.squeeze(g,dim=-1))#fang add
+ #print("@@@norm x:",x.shape)#fang add
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ proximal_bias=proximal_bias,
+ proximal_init=proximal_init,
+ )
+ )
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ causal=True,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
+ device=x.device, dtype=x.dtype
+ )
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ p_dropout=0.0,
+ window_size=None,
+ heads_share=True,
+ block_length=None,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+ self.emb_rel_v = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert (
+ t_s == t_t
+ ), "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(
+ query / math.sqrt(self.k_channels), key_relative_embeddings
+ )
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(
+ device=scores.device, dtype=scores.dtype
+ )
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert (
+ t_s == t_t
+ ), "Local attention is only available for self-attention."
+ block_mask = (
+ torch.ones_like(scores)
+ .triu(-self.block_length)
+ .tril(self.block_length)
+ )
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(
+ self.emb_rel_v, t_s
+ )
+ output = output + self._matmul_with_relative_values(
+ relative_weights, value_relative_embeddings
+ )
+ output = (
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
+ )
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[
+ :, slice_start_position:slice_end_position
+ ]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
+ )
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
+ :, :, :length, length - 1 :
+ ]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
+ )
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=0.0,
+ activation=None,
+ causal=False,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x_onlyspk_double.py b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x_onlyspk_double.py
new file mode 100644
index 0000000..1268f17
--- /dev/null
+++ b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc_spken200x_onlyspk_double.py
@@ -0,0 +1,1301 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions_in_dec_double as attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+from thop import profile
+from diffuse_fang.diffUse_wraper_double import diff_decoder,ddpm_para
+ddpm_dp = ddpm_para()
+g2_dim = 256
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ #self.emb_g = nn.Linear(256, hidden_channels)
+
+ def forward(self, phone, pitch, lengths,g):#fang add
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch) #+ self.emb_g(g)
+ #print("@@@x:",x.shape)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ #print("@@@x1:",x.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ #x = self.encoder(x * x_mask, x_mask,g)
+ x = self.encoder(x * x_mask, x_mask,g)#fang add
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask,x
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)#均值和方差 fang
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask ##随机采样 fang
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ self.ups_g = nn.ModuleList()# fang add
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ self.ups_g.append(
+ nn.Conv1d(upsample_initial_channel,upsample_initial_channel // (2 ** (i + 1) ), 1)
+ #F.interpolate(input, scale_factor=2, mode='nearest')
+ )# fang add
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ #x = x + self.cond(g) ##org
+ tmp_g = self.cond(g) ##fang add
+ x = x + tmp_g ##fang add
+ #print('###@@@@##x:',x.shape )
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xg = self.ups_g[i](tmp_g) #fang add
+ x = x + xg #fang add
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ #print('@@@@##x:',x.shape)
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+ "24k": 24000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ #print("@@@pitch.shape: ",pitch.shape)
+ #g = ds.unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ ) #按照self.segment_size这个长度,进行随机切割z,长度固定,开始位置不同存在ids_slice中,z_slice是切割的结果, fang
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ print('z shape: ',z.shape)
+ print('x_mask shape: ',x_mask.shape)
+ z_x_mask = z * x_mask
+ print('z_x_mask shape: ',z_x_mask.shape)
+ print('nsff0 shape:p', nsff0.shape)
+ print('g shape: ',g.shape)
+ o = self.dec(z * x_mask, nsff0, g=g)
+
+ self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+ def get_floats(self,):
+ T = 21.4 #郭宇_但愿人长久_40k.wav
+ z = torch.randn(1,g2_dim ,2740)# 2s data(同时用2s数据验证,整数倍就对了,防止干扰)
+ x_mask = torch.randn(1,1 ,2740)
+ g = torch.randn(1,256 ,1)
+
+ inputs_bfcc = z #z * x_mask
+ nsff0 = torch.randn(1, 2740)
+ devices = 'cuda' #'cpu'
+ self.dec = self.dec.to(devices).half()
+ inputs_bfcc , nsff0, g = inputs_bfcc.to(devices).half(), nsff0.to(devices).half(), g.to(devices).half()
+ flops, params = profile(self.dec, (inputs_bfcc, nsff0, g))
+ print(f'@@@hifi-gan nsf decflops: {flops/(T*pow(10,9))} GFLOPS, params: { params/pow(10,6)} M')
+ return 0
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ #for p in self.flow.parameters():
+ # p.requires_grad=False
+ #for p in self.enc_p.parameters():
+ # p.requires_grad=False
+
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ self.diff_decoder = diff_decoder
+ #self.diff_cond_g = nn.Conv1d(256,g2_dim, 1)
+ self.diff_cond_gx = self.zero_module(self.conv_nd(1, 256, g2_dim, 3, padding=1))
+ self.diff_cond_out = self.zero_module(self.conv_nd(1, g2_dim, g2_dim, 3, padding=1))
+ self.lzp = 0.1
+ self.ssl_proj = self.zero_module(nn.Conv1d(256*2, 256, 1, stride=1))
+ self.ssl_proj1 = self.zero_module(nn.Conv1d(256, 256, 1, stride=1))
+ self.ssl_proj1_norm = nn.BatchNorm1d(256)#nn.LayerNorm(256)
+ self.ssl_proj2 = self.zero_module(nn.Conv1d(256, 256, 1, stride=1))
+ self.ssl_proj2_norm = nn.BatchNorm1d(256)#nn.LayerNorm(256)
+
+ def zero_module(self,module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+ def conv_nd(self, dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ #g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ #print("@@@@@fang@@@@@")
+
+ #print("@@@@g:",ds.size())
+ #g, ge = ds[0], ds[1]
+ g = ds.unsqueeze(-1)
+ #g = self.ssl_proj(g)#[:,256:,:])
+ g1 = self.ssl_proj1_norm( self.ssl_proj1(g[:,:256,:]))
+ g2 = self.ssl_proj2_norm( self.ssl_proj2(g[:,256:,:]))
+ g = g1 + g[:,256:,:]#+ g2
+ #g = g[:,:256,:] + ge
+ #print("@@@@g1:",g.size())
+ #print("g:",g.size())
+ #print("phone_lengths: ",phone_lengths.size())
+ #print("pitch: ",pitch.size())
+ #m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)#self.enc_q = PosteriorEncoder ##这里面预测出了随机采样的隐变量z,m_q是均值,logs_q是方差,y_mask是mask的数据 fangi
+
+ z_p = self.flow(z, y_mask, g=g)# z是y_msk的输入
+ z_p_sample = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * y_mask
+ zx = self.flow(z_p_sample, y_mask, g=g, reverse=True)
+ #print("@@@@@g:",g.shape)
+ g_z_p = self.diff_cond_gx(g)
+ #print("@@@@@g_z_p:",g_z_p.shape)
+ z_res = z - zx
+
+ #print('#######x_embed:',x_embed.shape)
+ #print('#######z_p_sample:',z_p_sample.shape)
+ #print('#######g_z_p:',g_z_p.shape)
+ #z_p1 = z_p_sample + g_z_p
+ z_p1 = x_embed + g_z_p
+ ###diff st
+ z_p_diff = z_p1.transpose(1,2) ##b,frames,feat
+ z_diff = z_res.transpose(1,2) ##b,frames,feat
+
+ diff_loss,_ = self.diff_decoder(z_p_diff, gt_spec=z_diff, infer=False, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, use_tqdm=ddpm_dp.use_tqdm)
+
+ #self.diff_decoder = self.diff_decoder.float()
+ #print("@@@z: ",z.shape)
+ #b = z_p_diff.shape[0]
+ t = 200#np.random.randint(100,1000)#200#torch.randint(0, 1000, (b,), device=g.device).long()
+ z_diff = zx.transpose(1,2)
+ z_x_diff = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=t, use_tqdm=False)
+ #print("@@@z_x: ",z_x.shape)
+ z1 = z_x_diff.transpose(1,2)
+ z1 = self.diff_cond_out(z1)
+ z_in = (zx + z1)
+ #z_p = z_p_rec.transpose(1,2)
+ ##diff en
+ ##oneflow
+ #z_p = self.flow(z, y_mask, g=g)
+
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z_in, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q),diff_loss
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ g = self.ssl_proj(g)
+ #g1 = self.ssl_proj1_norm(g[:,:256,:])
+ #g2 = self.ssl_proj2_norm(g[:,256:,:])
+ #g1 = self.ssl_proj1_norm( self.ssl_proj1(g[:,:256,:]))
+ #g2 = self.ssl_proj2_norm( self.ssl_proj2(g[:,256:,:]))
+ #g1 = self.ssl_proj1(g[:,:256,:])
+ #g2 = self.ssl_proj1(g[:,:256,:])
+ #g = g1 + g2
+ #g = g[:,256:,:]#+ g2
+ #m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) #org
+ print("@@@@@@pitch:",pitch.shape,"phone:",phone.shape)
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g) #fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+
+ g_z_p = self.diff_cond_gx(g)
+ #z_p1 = z_p + g_z_p
+ z_p1 = x_embed + g_z_p
+ #if is_half:
+ #self.diff_decoder = self.diff_decoder.float()
+ z_p_diff = z_p1.transpose(1,2).float() ##b,frames,feat
+ z_diff = z.transpose(1,2) ##b,frames,feat
+ print("@@z_p_diff", z_p_diff[0,0,:])
+ self.diff_decoder = self.diff_decoder.float()
+ z_x = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=200, use_tqdm=ddpm_dp.use_tqdm)
+ print("@@z_x", z_x[0,0,:])
+ z1 = z_x.transpose(1,2).half()
+ z_res = self.diff_cond_out(z1)
+ z = z + z_res
+ o = self.dec(z * x_mask, nsff0, g=g)
+ #self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ #g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ g = ds.unsqueeze(-1)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) #org
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/AIMeiSheng/meisheng_env_preparex.py b/AIMeiSheng/meisheng_env_preparex.py
index 62f0afb..079ba38 100644
--- a/AIMeiSheng/meisheng_env_preparex.py
+++ b/AIMeiSheng/meisheng_env_preparex.py
@@ -1,55 +1,56 @@
import os
from AIMeiSheng.docker_demo.common import (gs_svc_model_path, gs_hubert_model_path, gs_embed_model_path,gs_embed_model_spk_path, gs_embed_config_spk_path, gs_rmvpe_model_path, download2disk)
def meisheng_env_prepare(logging, AIMeiSheng_Path='./'):
cos_path = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/dataset/AIMeiSheng/"
rmvpe_model_url = cos_path + "rmvpe.pt"
if not os.path.exists(gs_rmvpe_model_path):
if not download2disk(rmvpe_model_url, gs_rmvpe_model_path):
logging.fatal(f"download rmvpe_model err={rmvpe_model_url}")
gs_hubert_model_url = cos_path + "hubert_base.pt"
if not os.path.exists(gs_hubert_model_path):
if not download2disk(gs_hubert_model_url, gs_hubert_model_path):
logging.fatal(f"download hubert_model err={gs_hubert_model_url}")
#model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth"
#model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_ocean_ctl_enc_e22_s363704.pth"
- model_svc = "xusong_v2_org_version_alldata_embed_spkenx200x_vocal_e22_s95040.pth"
+ #model_svc = "xusong_v2_org_version_alldata_embed_spkenx200x_vocal_e22_s95040.pth"
+ model_svc = "xusong_v2_org_version_alldata_embed_spkenx200x_double_e14_s90706.pth"
base_dir = os.path.dirname(gs_svc_model_path)
os.makedirs(base_dir, exist_ok=True)
svc_model_url = cos_path + model_svc
if not os.path.exists(gs_svc_model_path):
if not download2disk(svc_model_url, gs_svc_model_path):
logging.fatal(f"download svc_model err={svc_model_url}")
model_embed = "model.pt"
base_dir = os.path.dirname(gs_embed_model_path)
os.makedirs(base_dir, exist_ok=True)
embed_model_url = cos_path + model_embed
if not os.path.exists(gs_embed_model_path):
if not download2disk(embed_model_url, gs_embed_model_path):
logging.fatal(f"download embed_model err={embed_model_url}")
model_spk_embed = "best_model.pth.tar"
base_dir = os.path.dirname(gs_embed_model_spk_path)
os.makedirs(base_dir, exist_ok=True)
embed_model_url = cos_path + model_spk_embed
if not os.path.exists(gs_embed_model_spk_path):
if not download2disk(embed_model_url, gs_embed_model_spk_path):
logging.fatal(f"download embed_model err={embed_model_url}")
model_spk_embed_cfg = "config.json"
base_dir = os.path.dirname(gs_embed_config_spk_path)
os.makedirs(base_dir, exist_ok=True)
embed_model_url = cos_path + model_spk_embed_cfg
if not os.path.exists(gs_embed_config_spk_path):
if not download2disk(embed_model_url, gs_embed_config_spk_path):
logging.fatal(f"download embed_model err={embed_model_url}")
if __name__ == "__main__":
meisheng_env_prepare()
diff --git a/AIMeiSheng/meisheng_svc_final.py b/AIMeiSheng/meisheng_svc_final.py
index 2080cba..273038c 100644
--- a/AIMeiSheng/meisheng_svc_final.py
+++ b/AIMeiSheng/meisheng_svc_final.py
@@ -1,247 +1,245 @@
import os
import sys
sys.path.append(os.path.dirname(__file__))
import time
import shutil
import glob
import hashlib
import librosa
import soundfile
import gradio as gr
import pandas as pd
import numpy as np
from AIMeiSheng.RawNet3.infererence_fang_meisheng import get_embed, get_embed_model
-#from myinfer_multi_spk_embed_in_dec_diff_fi_meisheng import svc_main, load_hubert, get_vc, get_rmvpe
-from AIMeiSheng.myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x import svc_main,load_hubert, get_vc,get_rmvpe
-
+from myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x_onlyspk_double import svc_main,load_hubert, get_vc,get_rmvpe
from gender_classify import load_gender_model
from AIMeiSheng.docker_demo.common import gs_svc_model_path, gs_embed_model_path, gs_rmvpe_model_path, gs_err_code_target_silence
from slicex.slice_set_silence import del_noise
gs_simple_mixer_path = "/data/gpu_env_common/bin/simple_mixer" ##混音执行文件
tmp_workspace_name = "batch_test_ocean_fi" # 工作空间名
song_folder = "./data_meisheng/" ##song folder
gs_work_dir = f"./data_meisheng/{tmp_workspace_name}" # 工作空间路径
pth_model_path = "./weights/xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth" ##模型文件
cur_dir = os.path.abspath(os.path.dirname(__file__))
abs_path = os.path.join(cur_dir, song_folder, tmp_workspace_name) + '/'
f0_method = None
def mix(in_path, acc_path, dst_path):
# svc转码到442
svc_442_file = in_path + "_442.wav"
st = time.time()
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} -loglevel fatal".format(in_path, svc_442_file)
os.system(cmd)
if not os.path.exists(svc_442_file):
return -1
print("transcode,{},sp={}".format(in_path, time.time() - st))
# 混合
st = time.time()
cmd = "{} {} {} {} 1".format(gs_simple_mixer_path, svc_442_file, acc_path, dst_path)
os.system(cmd)
print("mixer,{},sp={}".format(in_path, time.time() - st))
def load_model():
global f0_method
embed_model = get_embed_model(gs_embed_model_path)
hubert_model = load_hubert()
get_vc(gs_svc_model_path)
f0_method = get_rmvpe(gs_rmvpe_model_path)
print("model preload finish!!!")
return embed_model, hubert_model # ,svc_model
def meisheng_init():
embed_model, hubert_model = load_model() ##提前加载模型
gender_model = load_gender_model()
return embed_model, hubert_model, gender_model
def pyin_process_single_rmvpe(input_file):
global f0_method
if f0_method is None:
f0_method = get_rmvpe()
rate = 16000 # 44100
# 读取音频文件
y, sr = librosa.load(input_file, sr=rate)
len_s = len(y) / sr
lim_s = 15 # 10
f0_limit_10ms = 10
if (len_s > lim_s):
y1 = y[:sr * lim_s]
y2 = y[-sr * lim_s:]
f0 = f0_method.infer_from_audio(y1, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch1 = np.mean(valid_f0)
else:
mean_pitch1 = 0
f0 = f0_method.infer_from_audio(y2, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch2 = np.mean(valid_f0)
else:
mean_pitch2 = 0
if mean_pitch2 == 0 and mean_pitch1 == 0:
mean_pitch_cur = 0
elif mean_pitch2 == 0 or mean_pitch1 == 0:
mean_pitch_cur = max(mean_pitch1, mean_pitch2)
elif abs(mean_pitch1 - mean_pitch2) > 55:
mean_pitch_cur = min(mean_pitch1, mean_pitch2)
else:
mean_pitch_cur = (mean_pitch1 + mean_pitch2) / 2
else:
f0 = f0_method.infer_from_audio(y, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
if len(valid_f0) > f0_limit_10ms:
mean_pitch_cur = np.mean(valid_f0)
else:
mean_pitch_cur = 0
return mean_pitch_cur
def meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras):
##计算pitch
f0up_key = pyin_process_single_rmvpe(target_wav)
if f0up_key < 40 or np.isnan(f0up_key):#unvoice
return gs_err_code_target_silence
## get embed, 音色
get_embed(target_wav, embed_npy, embed_md)
embed_npy_spk = embed_npy[:-4] + '_spk.npy'
cs_sim.get_spk_embed(target_wav, embed_npy_spk)
print("get embed_npy_spk: {embed_npy_spk} ")
print("svc main start...")
svc_main(song_wav, svc_out_path, embed_npy, f0up_key, hubert_md, paras)
print("svc main finished!!")
del_noise(song_wav,svc_out_path,paras)
print("del noise in silence")
return 0
def process_svc_online(song_wav, target_wav, svc_out_path, embed_md, hubert_md, cs_sim, paras):
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
err_code = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras)
return err_code
def process_svc(song_wav, target_wav, svc_out_path, embed_md, hubert_md, cs_sim, paras):
song_wav1, target_wav, svc_out_path = os.path.basename(song_wav), os.path.basename(
target_wav), os.path.basename(svc_out_path) # 绝对路径
song_wav, target_wav, svc_out_path = song_wav, abs_path + target_wav, abs_path + svc_out_path
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
# similar = meisheng_svc(song_wav,target_wav,svc_out_path,embed_npy,paras)
similar = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, cs_sim, paras)
return similar
def get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras):
'''
:param target_yinse_wav: 目标音色
:param song_name: 歌曲名字
;param paras: 其他参数
:return: svc路径名
'''
##清空工作空间临时路径
if os.path.exists(gs_work_dir):
# shutil.rmtree(gs_work_dir)
cmd = f"rm -rf {gs_work_dir}/*"
os.system(cmd)
else:
os.makedirs(gs_work_dir)
gender = paras['gender'] ##为了确定歌曲
##目标音色读取
f_dst = os.path.join(gs_work_dir, os.path.basename(target_yinse_wav))
# print("dir :", f_dst,"target_yinse_wav:",target_yinse_wav)
# shutil.move(target_yinse_wav, f_dst) ##放在工作目录
shutil.copy(target_yinse_wav, f_dst)
target_yinse_wav = f_dst
##歌曲/伴奏 读取(路径需要修改)
song_wav = os.path.join("{}{}/{}/vocal321.wav".format(song_folder, gender, song_name)) # 歌曲vocal
inf_acc_path = os.path.join("{}{}/{}/acc.wav".format(song_folder, gender, song_name))
# song_wav = './xusong_long.wav'
svc_out_path = os.path.join(gs_work_dir, "svc.wav") ###svc结果名字
print("inputMsg:", song_wav, target_yinse_wav, svc_out_path)
## svc process
st = time.time()
print("start inference...")
similar = process_svc(song_wav, target_yinse_wav, svc_out_path, embed_model, hubert_model, cs_sim, paras)
print("svc finished!!")
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(svc_out_path))
# '''
##加混响
print("add reverbration...")
svc_out_path_effect = svc_out_path[:-4] + '_effect.wav'
cmd = f"/data/gpu_env_common/bin/effect_tool {svc_out_path} {svc_out_path_effect}"
print("cmd :", cmd)
os.system(cmd)
# # 人声伴奏合并
print("add acc...")
out_path = svc_out_path_effect[:-4] + '_music.wav'
mix(svc_out_path_effect, inf_acc_path, out_path)
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(out_path))
# '''
return svc_out_path
def meisheng_func(target_yinse_wav, song_name, paras):
##init
embed_model, hubert_model, gender_model = meisheng_init()
###gender predict
gender, female_rate, is_pure = gender_model.process(target_yinse_wav)
print('=====================')
print("gender:{}, female_rate:{},is_pure:{}".format(gender, female_rate, is_pure))
if gender == 0:
gender = 'female'
elif gender == 1:
gender = 'male'
elif female_rate > 0.5:
gender = 'female'
else:
gender = 'male'
print("modified gender:{} ".format(gender))
print('=====================')
##美声main
paras['gender'] = gender ##单位都是ms
get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras)
if __name__ == '__main__':
# target_yinse_wav = "./raw/meisheng_yinse/female/changying.wav" # 需要完整路径
target_yinse_wav = "./raw/meisheng_yinse/female/target_yinse_cloris.m4a"
song_name = "lost_stars" ##歌曲名字
paras = {'gender': None, 'tst': 0, "tnd": None, 'delay': 0, 'song_path': None}
# paras = {'gender': 'female', 'tst': 0, "tnd": 30, 'delay': 0} ###片段svc测试
meisheng_func(target_yinse_wav, song_name, paras)
diff --git a/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x_onlyspk_double.py b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x_onlyspk_double.py
new file mode 100644
index 0000000..4b0bed0
--- /dev/null
+++ b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_meisheng_ctl_enc_spk200x_onlyspk_double.py
@@ -0,0 +1,217 @@
+
+import os,sys,pdb,torch
+now_dir = os.getcwd()
+sys.path.append(now_dir)
+import argparse
+import glob
+import sys
+import torch
+from multiprocessing import cpu_count
+class Config:
+ def __init__(self,device,is_half):
+ self.device = device
+ self.is_half = is_half
+ self.n_cpu = 0
+ self.gpu_name = None
+ self.gpu_mem = None
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
+
+ def device_config(self) -> tuple:
+ current_dir = os.path.dirname(os.path.abspath(__file__))
+ config_path = os.path.join(current_dir, "configs")
+ if torch.cuda.is_available():
+ i_device = int(self.device.split(":")[-1])
+ self.gpu_name = torch.cuda.get_device_name(i_device)
+ if (
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
+ or "P40" in self.gpu_name.upper()
+ or "1060" in self.gpu_name
+ or "1070" in self.gpu_name
+ or "1080" in self.gpu_name
+ ):
+ print("16系/10系显卡和P40强制单精度")
+ self.is_half = False
+ for config_file in ["32k.json", "40k.json", "48k.json"]:
+ with open(f"{config_path}/{config_file}", "r") as f:
+ strr = f.read().replace("true", "false")
+ with open(f"{config_path}/{config_file}", "w") as f:
+ f.write(strr)
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ else:
+ self.gpu_name = None
+ self.gpu_mem = int(
+ torch.cuda.get_device_properties(i_device).total_memory
+ / 1024
+ / 1024
+ / 1024
+ + 0.4
+ )
+ if self.gpu_mem <= 4:
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ elif torch.backends.mps.is_available():
+ print("没有发现支持的N卡, 使用MPS进行推理")
+ self.device = "mps"
+ else:
+ print("没有发现支持的N卡, 使用CPU进行推理")
+ self.device = "cpu"
+ self.is_half = True
+
+ if self.n_cpu == 0:
+ self.n_cpu = cpu_count()
+
+ if self.is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 80 #60
+ x_max = 85#65
+ else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
+
+ if self.gpu_mem != None and self.gpu_mem <= 4:
+ x_pad = 1
+ x_query = 5
+ x_center = 30
+ x_max = 32
+
+ return x_pad, x_query, x_center, x_max
+
+
+index_path="./logs/xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_muloss_show/added_IVF614_Flat_nprobe_1_xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_show_v2.index"
+# f0method="rmvpe" #harvest or pm
+index_rate=float("0.0") #index rate
+device="cuda:0"
+is_half=True
+filter_radius=int(3) ##3
+resample_sr=int(0) # 0
+rms_mix_rate=float(1) # rms混合比例 1,不等于1混合
+protect=float(0.33 )## ??? 0.33 fang
+
+
+
+#print(sys.argv)
+config=Config(device,is_half)
+now_dir=os.getcwd()
+sys.path.append(now_dir)
+
+from vc_infer_pipeline_org_embed_spk import VC
+from lib.infer_pack.models_embed_in_dec_diff_control_enc_spken200x_onlyspk_double import (
+ SynthesizerTrnMs256NSFsid,
+ SynthesizerTrnMs256NSFsid_nono,
+ SynthesizerTrnMs768NSFsid,
+ SynthesizerTrnMs768NSFsid_nono,
+)
+from lib.audio import load_audio
+from fairseq import checkpoint_utils
+from scipy.io import wavfile
+from AIMeiSheng.docker_demo.common import gs_hubert_model_path
+# hubert_model=None
+def load_hubert():
+ # global hubert_model
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([gs_hubert_model_path],suffix="",)
+ #models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["checkpoint_best_legacy_500.pt"],suffix="",)
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(device)
+ if(is_half):hubert_model = hubert_model.half()
+ else:hubert_model = hubert_model.float()
+ hubert_model.eval()
+ return hubert_model
+
+def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,hubert_model,paras):
+ global tgt_sr,net_g,vc,version
+ if input_audio is None:return "You need to upload an audio", None
+ f0_up_key = int(f0_up_key)
+ # print("@@xxxf0_up_key:",f0_up_key)
+ audio = load_audio(input_audio,16000)
+ if paras != None:
+ st = int(paras['tst'] * 16000/1000)
+ en = len(audio)
+ if paras['tnd'] != None:
+ en = min(en,int(paras['tnd'] * 16000/1000))
+ audio = audio[st:en]
+
+ times = [0, 0, 0]
+ if(hubert_model==None):
+ hubert_model = load_hubert()
+ if_f0 = cpt.get("f0", 1)
+ audio_opt=vc.pipeline_mulprocess(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius,tgt_sr,resample_sr,rms_mix_rate,version,protect,f0_file=f0_file)
+
+ #print(times)
+ #print("@@using multi process")
+ return audio_opt
+
+
+def get_vc_core(model_path,is_half):
+
+ #print("loading pth %s" % model_path)
+ cpt = torch.load(model_path, map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
+ if_f0 = cpt.get("f0", 1)
+ version = cpt.get("version", "v1")
+ if version == "v1":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ elif version == "v2":
+ if if_f0 == 1: #
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
+ else:
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
+ #print("load model finished")
+ del net_g.enc_q
+ net_g.load_state_dict(cpt["weight"], strict=False)
+ #print("load net_g finished")
+
+ return tgt_sr,net_g,cpt,version
+
+def get_vc1(model_path,is_half):
+ tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
+
+ net_g.eval().to(device)
+ if (is_half):net_g = net_g.half()
+ else:net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ n_spk=cpt["config"][-3]
+ return
+def get_rmvpe(model_path="rmvpe.pt"):
+ from lib.rmvpe import RMVPE
+ global f0_method
+ #print("loading rmvpe model")
+ f0_method = RMVPE(model_path, is_half=True, device='cuda')
+ return f0_method
+
+
+def get_vc(model_path):
+ global n_spk,tgt_sr,net_g,vc,cpt,device,is_half,version
+ tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
+
+ net_g.eval().to(device)
+ if (is_half):net_g = net_g.half()
+ else:net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ n_spk=cpt["config"][-3]
+ # return {"visible": True,"maximum": n_spk, "__type__": "update"}
+ # return net_g
+
+
+def svc_main(input_path,opt_path,sid_embed,f0up_key=0,hubert_model=None, paras=None):
+ #print("sid_embed: ",sid_embed)
+ wav_opt = vc_single(sid_embed,input_path,f0up_key,None,f0_method,index_path,index_rate,hubert_model,paras)
+ #print("out_path: ",opt_path)
+ wavfile.write(opt_path, tgt_sr, wav_opt)
+
+
+
+

File Metadata

Mime Type
text/x-diff
Expires
Mon, Nov 25, 09:00 (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1326575
Default Alt Text
(90 KB)

Event Timeline