Page Menu
Home
Phabricator
Search
Configure Global Search
Log In
Files
F4880318
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
31 KB
Subscribers
None
View Options
diff --git a/mnn_demo/src/CRvcLiteOnline.cpp b/mnn_demo/src/CRvcLiteOnline.cpp
index 4f9c833..241c6b8 100644
--- a/mnn_demo/src/CRvcLiteOnline.cpp
+++ b/mnn_demo/src/CRvcLiteOnline.cpp
@@ -1,811 +1,811 @@
//
// Created by Administrator on 2023/11/29.
//
#include <cmath>
#include <cstring>
#include <sys/time.h>
#include "CRvcLiteOnline.h"
#include "Hubert.h"
#include "CSynthesizer.h"
#include "espyin-v1.0/ESPYIN.h"
#include "ThreadPool.h"
#include "CRvcCircleBuffer.h"
#include "FfmpegResampler.h"
#include <unistd.h>
inline bool file_exists (const std::string& name) {
return ( access( name.c_str(), F_OK ) != -1 );
}
// size代表了buf的长度
void stereo2mono(float *input, int size, float *output) {
for (int i = 0; i < size - 1; i += 2) {
output[i / 2] = (input[i] + input[i + 1]) / 2;
}
}
void mono2stereo(float *input, int size, float *output) {
for (int i = 0; i < size; i++) {
output[2 * i] = input[i];
output[2 * i + 1] = input[i];
}
}
CRvcLiteOnline::CRvcLiteOnline() {
init_variable();
m_init = false;
m_switch_model = false;
// 输入部分需要的变量
// 要求输入的时间片长度,采样点数
m_input_block_frame = int(gs_block_time * gs_src_samplerate);
// 推理时额外需要的长度
m_input_extra_frame = int(gs_extra_time * gs_src_samplerate);
int zc = gs_src_samplerate / 100; // 10ms的点数
int input_corssfade_frame = int(gs_crossfade_time * gs_src_samplerate);
// 推理时使用的buffer长度
m_input_predict_buf_frame = int(ceil((m_input_extra_frame + input_corssfade_frame + m_input_block_frame)
* 1.0 / zc) * zc);
// 推理时使用的buffer
m_input_predict_buf = new float[m_input_predict_buf_frame];
memset(m_input_predict_buf, 0, sizeof(float) * m_input_predict_buf_frame);
// 输出部分需要的变量
m_crossfade_frame = int(gs_crossfade_time * gs_dst_samplerate);
m_output_block_frame = int(gs_block_time * gs_dst_samplerate);
int output_extra_frame = int(gs_extra_time * gs_dst_samplerate);
zc = gs_dst_samplerate / 100;
m_output_cache_buf_frame = int(ceil((m_output_block_frame + m_crossfade_frame + output_extra_frame)
* 1.0 / zc) * zc);
m_output_cache_buf = new float[m_output_cache_buf_frame];
memset(m_output_cache_buf, 0, sizeof(float) * m_output_cache_buf_frame);
m_crossfade_buf = new float[m_crossfade_frame];
memset(m_crossfade_buf, 0, sizeof(float) * m_crossfade_frame);
// 对于模型的输入和输出进行缓存
// 此处是写死的和模型有关
m_hubert_ret.resize(1);
m_hubert_ret[0].resize(gs_hubert_frame);
for (int i = 0; i < gs_hubert_frame; i++) {
m_hubert_ret[0][i].resize(gs_hubert_dim);
}
// synth模型的输入
m_synth_input.resize(1);
m_synth_input[0].resize(gs_synth_input_frame);
for (int i = 0; i < gs_synth_input_frame; i++) {
m_synth_input[0][i].resize(gs_synth_input_dim);
}
m_synth_out.resize(1);
m_synth_out[0].resize(1);
m_synth_out[0][0].resize(gs_synth_output_frame);
}
CRvcLiteOnline::~CRvcLiteOnline() {
uninit();
}
/**********************************对内函数*********************************************/
void CRvcLiteOnline::uninit() {
if (m_input_predict_buf != NULL) {
delete[] m_input_predict_buf;
m_input_predict_buf = NULL;
}
if (m_output_cache_buf != NULL) {
delete[] m_output_cache_buf;
m_output_cache_buf = NULL;
}
if (m_crossfade_buf != NULL) {
delete[] m_crossfade_buf;
m_crossfade_buf = NULL;
}
init_variable();
}
void CRvcLiteOnline::get_pyin_f0() {
for (int i = 0; i < m_input_predict_buf_frame; i += 160) {
m_es_pyin->process(m_input_predict_buf + i);
}
m_f0_data.clear();
ESFeatureSet feats = m_es_pyin->getRemainingFeatures();
if (!feats.empty()) {
m_f0_data.resize(feats[4].size());
for (size_t i = 0; i < feats[4].size(); ++i) {
// JL_DEBUG
m_f0_data[i] = feats[4][i].values[0];
if (m_f0_data[i] < 0) {
m_f0_data[i] = 0;
}
}
}
m_es_pyin->reset();
get_f0_post();
}
void CRvcLiteOnline::get_f0_post() {
int f0_min = 50;
int f0_max = 1100;
float f0_mel_min = 1127 * log2(1 + f0_min * 1.0 / 700);
float f0_mel_max = 1127 * log2(1 + f0_max * 1.0 / 700);
m_f0_coarse_data.clear();
m_f0_coarse_data.resize(m_f0_data.size());
for (int i = 0; i < m_f0_data.size(); i++) {
float f0_mel = 1127 * log2(1 + m_f0_data[i] / 700);
if (f0_mel > 0) {
f0_mel = (f0_mel - f0_mel_min) * 254.f / (f0_mel_max - f0_mel_min) + 1;
}
if (f0_mel <= 1) {
f0_mel = 1;
} else if (f0_mel > 255) {
f0_mel = 255;
}
m_f0_coarse_data[i] = float(int(f0_mel + 0.5));
}
}
void CRvcLiteOnline::init_variable() {
m_init = false;
m_switch_model = false;
// 缓存使用的数据
// 要求输入的时间片长度,采样点数
m_input_block_frame = 0;
m_input_extra_frame = 0;
m_input_predict_buf_frame = 0;
m_input_predict_buf = nullptr;
m_f0_data.clear();
m_f0_coarse_data.clear();
m_crossfade_frame = 0;
m_output_block_frame = 0;
m_output_cache_buf_frame = 0;
m_crossfade_buf = nullptr;
m_output_cache_buf = nullptr;
// 各个实例的返回结果
m_hubert_ret.clear();
m_synth_input.clear();
m_synth_out.clear();
m_fade_in = true;
}
/**********************************对外函数*********************************************/
int CRvcLiteOnline::init(const char *hubert_model_path) {
if (m_init) {
return ERR_RVC_LITE_REINIT;
}
m_hubert_inst = std::make_shared<Hubert>();
m_synthesizer_inst = std::make_shared<CSynthesizer>();
m_hubert_inst->init(hubert_model_path);
// m_synthesizer_inst->init(synth_model_path);
// 要求stepSize必须是2^n
m_es_pyin = std::make_shared<ESPYIN>(16000, 160, 1024, 50, 1100);
m_init = true;
m_switch_model = false;
m_fade_in = true;
return ERR_RVC_LITE_SUCCESS;
}
int CRvcLiteOnline::switch_synth_model(const char *synth_model_path) {
if (!m_init) {
return ERR_RVC_LITE_NOT_INIT;
}
if (file_exists(synth_model_path))
{
m_synthesizer_inst = std::make_shared<CSynthesizer>();
m_synthesizer_inst->init(synth_model_path);
m_switch_model = true;
return ERR_RVC_LITE_SUCCESS;
}
return ERR_RVC_LITE_MODEL_NOT_EXISTS;
}
void CRvcLiteOnline::reset() {
memset(m_input_predict_buf, 0, sizeof(float) * m_input_predict_buf_frame);
memset(m_crossfade_buf, 0, sizeof(float) * m_crossfade_frame);
memset(m_output_cache_buf, 0, sizeof(float) * m_output_cache_buf_frame);
m_fade_in = true;
}
int CRvcLiteOnline::process_block(float *in_buf, int in_len, float *out_buf, int out_len) {
if (!m_init) {
return ERR_RVC_LITE_NOT_INIT;
}
if (!m_switch_model)
{
return ERR_RVC_LITE_NOT_SWITCH_MODEL;
}
// 外部数据产生不连贯,比如做了reset的时候,需要做fade_in
if (m_fade_in)
{
for(int i = 0; i < in_len; i++)
{
float rate = i * 1.0 / in_len;
in_buf[i] = in_buf[i] * rate;
}
m_fade_in = false;
}
// 剔除尾部的block的数据
memcpy(m_input_predict_buf, m_input_predict_buf + in_len,
sizeof(float) * (m_input_predict_buf_frame - in_len));
// 向尾部填充in_buf的数据
memcpy(m_input_predict_buf + (m_input_predict_buf_frame - in_len), in_buf,
sizeof(float) * in_len);
// 提取f0特征序列
struct timeval start;
struct timeval end;
gettimeofday(&start, NULL);
get_pyin_f0();
gettimeofday(&end, NULL);
LOGE("CRvcLiteOnline", "get pyin sp = %f ms\n",
(end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_usec - start.tv_usec) / 1000.0);
// 推理hubert
gettimeofday(&start, NULL);
m_hubert_inst->process(m_input_predict_buf, m_hubert_ret);
gettimeofday(&end, NULL);
LOGE("CRvcLiteOnline", "m_hubert_inst sp = %f ms\n",
(end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_usec - start.tv_usec) / 1000.0);
// 合成语音
for (int i = 0; i < gs_synth_input_frame; i++) {
// 拷贝数据 1,gs_hubert_frame,258
for (int j = 0; j < gs_hubert_dim; j++) {
m_synth_input[0][i][j] = m_hubert_ret[0][i][j];
}
m_synth_input[0][i][256] = m_f0_coarse_data[i];
m_synth_input[0][i][257] = m_f0_data[i];
}
gettimeofday(&start, NULL);
m_synthesizer_inst->process(m_synth_input, m_synth_out);
gettimeofday(&end, NULL);
LOGE("CRvcLiteOnline", "m_synthesizer_inst sp = %f ms\n",
(end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_usec - start.tv_usec) / 1000.0);
// 将结果全部放到缓存中
memcpy(m_output_cache_buf, m_output_cache_buf + gs_synth_output_frame,
sizeof(float) * (m_output_cache_buf_frame - gs_synth_output_frame));
memcpy(m_output_cache_buf + (m_output_cache_buf_frame - gs_synth_output_frame),
m_synth_out[0][0].data(), sizeof(float) * gs_synth_output_frame);
int start_pos = m_output_cache_buf_frame - m_crossfade_frame - out_len;
memcpy(out_buf, m_output_cache_buf + start_pos, sizeof(float) * out_len);
// 对头部数据做fade_in以及fadeout
for (int i = 0; i < m_crossfade_frame; i++) {
float rate = float(i * 1.f / m_crossfade_frame);
out_buf[i] = rate * out_buf[i] + m_crossfade_buf[i] * (1 - rate);
}
memcpy(m_crossfade_buf, m_output_cache_buf + (m_output_cache_buf_frame - m_crossfade_frame),
sizeof(float) * m_crossfade_frame);
return 0;
}
int CRvcLiteOnline::get_latency_ms() {
return gs_crossfade_time * 1000;
}
/*******************************对内的类**************************************/
CResample::CResample()
{
m_resample_inst = nullptr;
}
CResample::~CResample()
{
}
int CResample::init(int in_samplerate, int out_samplerate, int in_channel, int out_channel)
{
// 只是通道数不一致时走自驱逻辑
m_in_channel = in_channel;
m_out_channel = out_channel;
if (in_samplerate == out_samplerate && in_channel != out_channel) {
m_resample_inst = nullptr;
}
else {
m_resample_inst = std::make_shared<CFfmpegResampler>();
return m_resample_inst->init(in_samplerate, out_samplerate, in_channel, out_channel);
}
return ERR_RVC_LITE_SUCCESS;
}
int CResample::get_out_samples(int num)
{
if (m_resample_inst)
{
return m_resample_inst->get_out_samples(num);
}
return num;
}
void CResample::reset()
{
if (m_resample_inst)
{
return m_resample_inst->reset();
}
}
int CResample::get_latency()
{
if (m_resample_inst)
{
return m_resample_inst->get_latency();
}
return 0;
}
int CResample::resample(float *in_buf, int in_num, float *out_buf, int &out_num) {
if (m_resample_inst) {
return m_resample_inst->resample(in_buf, in_num, out_buf, out_num);
}
if (m_in_channel == 2 && m_out_channel == 1) {
if (out_num < in_num) {
return ERR_RVC_LITE_RT_RESAMPLE_OUTBUF_SHORT;
}
stereo2mono(in_buf, in_num, out_buf);
return ERR_RVC_LITE_SUCCESS;
}
if (m_in_channel == 1 && m_out_channel == 2) {
if (out_num < in_num) {
return ERR_RVC_LITE_RT_RESAMPLE_OUTBUF_SHORT;
}
mono2stereo(in_buf, in_num, out_buf);
return ERR_RVC_LITE_SUCCESS;
}
return ERR_RVC_LITE_SUCCESS;
}
/*******************************对外的类***************************************/
/*******************************对内函数***************************************/
void CRvcLiteOnlineRealTime::init_variable() {
m_init = false;
m_rvc_stop = true;
m_sample_rate = 44100;
m_channel = 1;
m_synth_path = "";
m_new_synth_path = "";
m_syn_state = RVC_LITE_RT_SYN_STATE_DEFAULT;
}
/*******************************对外函数***************************************/
CRvcLiteOnlineRealTime::CRvcLiteOnlineRealTime() {
init_variable();
}
CRvcLiteOnlineRealTime::~CRvcLiteOnlineRealTime() {
uninit();
}
int CRvcLiteOnlineRealTime::init(const char *hubert_model_path, int sample_rate, int channel) {
if (m_init) {
return ERR_RVC_LITE_RT_REINIT;
}
if (sample_rate < 16000) {
return ERR_RVC_LITE_RT_INPUT_SAMPLE_ERR;
}
init_variable();
m_sample_rate = sample_rate;
m_channel = channel;
m_synth_path = "";
m_new_synth_path = "";
m_syn_state = RVC_LITE_RT_SYN_STATE_DEFAULT;
int output_one_sec_number = m_sample_rate * m_channel; // 临时使用的数据
int latency_len = gs_crossfade_time * m_sample_rate * m_channel;
CThreadPool::Task task = std::bind(&CRvcLiteOnlineRealTime::rvc_process, this);
m_rvc_inst = std::make_shared<CRvcLiteOnline>();
int err = m_rvc_inst->init(hubert_model_path);
if (ERR_RVC_LITE_SUCCESS != err) {
goto exit;
}
// 重采样部分
m_resample_queue = std::make_shared<CRvcCircleBuffer>(sample_rate * 3 * m_channel);
m_resample16 = std::make_shared<CResample>();
err = m_resample16->init(m_sample_rate, gs_src_samplerate, m_channel, 1);
if (ERR_RVC_LITE_SUCCESS != err) {
goto exit;
}
m_resample2src = std::make_shared<CResample>();
err = m_resample2src->init(gs_dst_samplerate, m_sample_rate, 1, m_channel);
if (ERR_RVC_LITE_SUCCESS != err) {
goto exit;
}
m_resample_buf_max_len = 2048; // 此时空间最大是2048,保证不超即可
m_resample_in_buf = std::shared_ptr<float>(new float[m_resample_buf_max_len], std::default_delete<float[]>());
m_resample_out_buf = std::shared_ptr<float>(new float[m_resample_buf_max_len], std::default_delete<float[]>());
// 核心处理部分
m_input_tmp_buf_len = gs_src_samplerate;
m_output_tmp_buf_len = gs_dst_samplerate;
m_input_tmp_buf = std::shared_ptr<float>(new float[m_input_tmp_buf_len], std::default_delete<float[]>());
m_output_tmp_buf = std::shared_ptr<float>(new float[m_output_tmp_buf_len], std::default_delete<float[]>());
memset(m_input_tmp_buf.get(), 0, sizeof(float) * m_input_tmp_buf_len);
memset(m_output_tmp_buf.get(), 0, sizeof(float) * m_output_tmp_buf_len);
// 循环buffer
m_input_queue = std::make_shared<CRvcCircleBuffer>(m_input_tmp_buf_len * 3);
// 对外的是目标的采样率和通道数的数据
m_out_queue = std::make_shared<CRvcCircleBuffer>(output_one_sec_number * 3);
m_latency_queue = std::make_shared<CRvcCircleBuffer>(latency_len);
// 提前塞入两组,保证延迟稳定在2s
for (int i = 0; i < 2; i++) {
// 塞入1s数据
for (int j = 0; j < output_one_sec_number / m_output_tmp_buf_len; j++) {
m_out_queue->push(m_output_tmp_buf.get(), m_output_tmp_buf_len);
}
m_out_queue->push(m_output_tmp_buf.get(), output_one_sec_number % m_output_tmp_buf_len);
}
// 算法本身有延迟,所有为了保证延迟一致,在无效果的时候需要添加该延迟
for (int j = 0; j < latency_len / m_output_tmp_buf_len; j++) {
m_latency_queue->push(m_output_tmp_buf.get(), m_output_tmp_buf_len);
}
m_latency_queue->push(m_output_tmp_buf.get(), latency_len % m_output_tmp_buf_len);
// 开始处理线程
m_thread_pool = std::make_shared<CThreadPool>();
m_thread_pool->start(1);
m_rvc_stop = false;
m_thread_pool->run(task);
m_init = true;
exit:
if (ERR_RVC_LITE_SUCCESS != err) {
m_init = true;
uninit();
}
return err;
}
int CRvcLiteOnlineRealTime::switch_synth(const char *synth_model_path) {
if (!m_init) {
return ERR_RVC_LITE_RT_NOT_INIT;
}
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_new_synth_path = synth_model_path;
}
return ERR_RVC_LITE_SUCCESS;
}
int CRvcLiteOnlineRealTime::process(float *in_buf, int in_len, float *out_buf, int out_len) {
if (!m_init) {
return ERR_RVC_LITE_RT_NOT_INIT;
}
// 写入数据
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_resample_queue->push(in_buf, in_len);
m_rvc_cond.notify_all();
}
memset(out_buf, 0, sizeof(float) * out_len);
int tmp_out_len = out_len;
// 获取数据
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_out_queue->pop(out_buf, tmp_out_len);
}
if (tmp_out_len != out_len) {
return ERR_RVC_LITE_RT_NOT_ENOUGH_DATA;
}
return ERR_RVC_LITE_SUCCESS;
}
void CRvcLiteOnlineRealTime::reset() {
if (!m_init) {
return;
}
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_resample_queue->reset();
m_resample16->reset();
m_resample2src->reset();
m_input_queue->reset();
m_out_queue->reset();
m_rvc_inst->reset();
m_latency_queue->reset();
// 提前塞入两组,保证延迟稳定在2s
int output_one_sec_number = m_sample_rate * m_channel; // 临时使用的数据
memset(m_output_tmp_buf.get(), 0, sizeof(float) * m_output_tmp_buf_len);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < output_one_sec_number / m_output_tmp_buf_len; j++) {
m_out_queue->push(m_output_tmp_buf.get(), m_output_tmp_buf_len);
}
m_out_queue->push(m_output_tmp_buf.get(), output_one_sec_number % m_output_tmp_buf_len);
}
// 算法本身有延迟,所有为了保证延迟一致,在无效果的时候需要添加该延迟
int latency_len = gs_crossfade_time * m_sample_rate * m_channel;
for (int j = 0; j < latency_len / m_output_tmp_buf_len; j++) {
m_latency_queue->push(m_output_tmp_buf.get(), m_output_tmp_buf_len);
}
m_latency_queue->push(m_output_tmp_buf.get(), latency_len % m_output_tmp_buf_len);
}
}
void CRvcLiteOnlineRealTime::flush(float *&out_buf, int &len) {
// 将内部的所有的数据吐出来
/**
* 先停止
*/
stop();
// 无音色转换的情况
int resample_in_len = 0;
int resample_out_len = 0;
if(m_syn_state == RVC_LITE_RT_SYN_STATE_DEFAULT)
{
while (m_resample_queue->size() > 0) {
resample_in_len = m_resample_buf_max_len;
m_resample_queue->pop(m_resample_in_buf.get(), resample_in_len);
m_latency_queue->push(m_resample_in_buf.get(), resample_in_len);
m_latency_queue->pop(m_resample_in_buf.get(), resample_in_len);
m_out_queue->push(m_resample_in_buf.get(), resample_in_len);
}
-
+
while(m_latency_queue->size() > 0)
{
resample_in_len = m_resample_buf_max_len;
m_latency_queue->pop(m_resample_in_buf.get(), resample_in_len);
m_out_queue->push(m_resample_in_buf.get(), resample_in_len);
}
len = m_out_queue->size();
out_buf = new float[len];
m_out_queue->pop(out_buf, len);
return;
}
// 有音色转换的情况
while (m_resample_queue->size() > 0) {
resample_in_len = m_resample_buf_max_len;
m_resample_queue->pop(m_resample_in_buf.get(), resample_in_len);
// 输入的数据需要考虑channel
resample_out_len = m_resample16->get_out_samples(resample_in_len / m_channel);
m_resample16->resample(m_resample_in_buf.get(), resample_in_len / m_channel, m_resample_out_buf.get(),
resample_out_len);
// 输出是16k单声道,不需要考虑
m_input_queue->push(m_resample_out_buf.get(), resample_out_len);
}
memset(m_input_tmp_buf.get(), 0, sizeof(float) * m_input_tmp_buf_len);
int add_size = m_input_tmp_buf_len - m_input_queue->size() % m_input_tmp_buf_len;
if (add_size != 0 && add_size < m_input_tmp_buf_len) {
m_input_queue->push(m_input_tmp_buf.get(), add_size);
}
int num = m_input_queue->size() / m_input_tmp_buf_len;
for (int i = 0; i < num; i++) {
rvc_process_step();
}
// 将所有数据拷贝出来
len = m_out_queue->size();
out_buf = new float[len];
m_out_queue->pop(out_buf, len);
}
int CRvcLiteOnlineRealTime::get_latency_ms() {
return m_rvc_inst->get_latency_ms() + 2000;
}
/*******************************对内函数***************************************/
void CRvcLiteOnlineRealTime::uninit() {
if (!m_init) {
return;
}
stop();
}
void CRvcLiteOnlineRealTime::stop() {
// 释放thread_pool的数据,先通知一下rvc_process,防止是在等待中
m_rvc_stop = true;
if (m_thread_pool) {
m_rvc_cond.notify_all();
m_thread_pool->stop();
}
}
void CRvcLiteOnlineRealTime::rvc_process_step() {
struct timeval start;
struct timeval end;
int sample_out_len = 0;
// 开始处理
if (m_input_queue->size() < m_input_tmp_buf_len) {
return;
}
gettimeofday(&start, NULL);
m_input_queue->pop(m_input_tmp_buf.get(), m_input_tmp_buf_len);
m_rvc_inst->process_block(m_input_tmp_buf.get(), m_input_tmp_buf_len,
m_output_tmp_buf.get(), m_output_tmp_buf_len);
gettimeofday(&end, NULL);
LOGD("RvcLite", "rvc_process process sp %f ms",
(end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_usec - start.tv_usec) / 1000.0);
// 重采样
// 考虑到此处采样率变大,但是最多也不到两倍,但是通道数有可能扩展到两倍,所以按照1/4进行设置
gettimeofday(&start, NULL);
bool last = false;
int step = m_resample_buf_max_len / 4;
for (int i = 0; i < m_output_tmp_buf_len; i += step) {
if (i + step >= m_output_tmp_buf_len) {
step = m_output_tmp_buf_len - i;
last = true;
}
// 此时的输入是单声道,采样点数量和总长度一致
sample_out_len = m_resample2src->get_out_samples(step);
m_resample2src->resample(m_output_tmp_buf.get() + i, step, m_resample_out_buf.get(), sample_out_len);
// 从有到无
if(last && m_syn_state == RVC_LITE_RT_SYN_STATE_EFFECT2DEFAULT)
{
// 因为不加音效也需要延迟对齐,所以此处只要做fade_out就行了
for(int ii =0; ii < sample_out_len * m_channel; ii+=m_channel)
{
float rate = ii * 1.0 / step;
for(int jj = 0; jj < m_channel; jj++)
{
m_resample_out_buf.get()[ii+jj] = m_resample_out_buf.get()[ii+jj] * (1 - rate);
}
}
m_syn_state = RVC_LITE_RT_SYN_STATE_BEFORE_DEFAULT;
}
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_out_queue->push(m_resample_out_buf.get(), sample_out_len * m_channel);
}
}
gettimeofday(&end, NULL);
LOGD("RvcLite", "rvc_process re_resample sp %f ms",
(end.tv_sec - start.tv_sec) * 1000.0 + (end.tv_usec - start.tv_usec) / 1000.0);
printf("finish ...\n");
}
void CRvcLiteOnlineRealTime::rvc_process() {
int sample_in_len;
int sample_out_len = 0;
while (!m_rvc_stop) {
{
// 重采样
std::unique_lock<std::mutex> lock(m_rvc_mutex);
if (m_resample_queue->size() < m_resample_buf_max_len) {
// 睡眠前检查下情况
if (m_rvc_stop) {
return;
}
m_rvc_cond.wait(lock);
continue;
}
sample_in_len = m_resample_buf_max_len;
m_resample_queue->pop(m_resample_in_buf.get(), sample_in_len);
}
/**
* 此处有三种情况:
* 因为无论哪种变换,有延迟的存在,导致输入的数据都是需要塞0进去,所以对当前的数据做fade_out即可
* 1. 无到有:对无到有的部分做个fade_out,对下一帧要塞入音效器的部分做fade_in
* 2. 有到无:对无到有的部分做个fade_out,对下一帧要塞入音效器的部分做fade_in
* 3. 有到有[这个不用考虑,内部自己做了处理]
*/
if (m_synth_path != m_new_synth_path) {
// 从无到有,此时对本帧做fade_out,对下一帧输入做fade_in
if(m_synth_path.empty() && !m_new_synth_path.empty())
{
m_syn_state = RVC_LITE_RT_SYN_STATE_DEFAULT2EFFECT;
}
// 从有到无
if (!m_synth_path.empty() && m_new_synth_path.empty())
{
m_syn_state = RVC_LITE_RT_SYN_STATE_EFFECT2DEFAULT;
}
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_synth_path = m_new_synth_path;
}
m_rvc_inst->switch_synth_model(m_new_synth_path.c_str());
}
// 刚切过来第一次做效果
if(m_syn_state == RVC_LITE_RT_SYN_STATE_BEFORE_DEFAULT)
{
// 刚从有到无,需要清空数据,以及对输入的队列添加fade_in
m_latency_queue->reset();
// 算法本身有延迟,所有为了保证延迟一致,在无效果的时候需要添加该延迟
memset(m_output_tmp_buf.get(), 0, sizeof(float) * m_output_tmp_buf_len);
int latency_len = gs_crossfade_time * m_sample_rate * m_channel;
for (int j = 0; j < latency_len / m_output_tmp_buf_len; j++) {
m_latency_queue->push(m_output_tmp_buf.get(), m_output_tmp_buf_len);
}
m_latency_queue->push(m_output_tmp_buf.get(), latency_len % m_output_tmp_buf_len);
// 对输入做fade_in
for(int i = 0; i < sample_in_len; i+=m_channel)
{
float rate = i * 1.0 / sample_in_len;
for(int j = 0; j < m_channel; j++)
{
m_resample_in_buf.get()[i+j] *= rate;
}
}
m_syn_state = RVC_LITE_RT_SYN_STATE_DEFAULT;
}
// 不做效果
if(m_syn_state == RVC_LITE_RT_SYN_STATE_DEFAULT)
{
m_latency_queue->push(m_resample_in_buf.get(), sample_in_len);
m_latency_queue->pop(m_resample_in_buf.get(), sample_in_len);
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_out_queue->push(m_resample_in_buf.get(), sample_in_len);
}
continue;
}
// 从无到有的转换
if (m_syn_state == RVC_LITE_RT_SYN_STATE_DEFAULT2EFFECT)
{
// 做fade_out
for(int i = 0; i < sample_in_len; i+=m_channel)
{
float rate = i * 1.0 / sample_in_len;
for(int j = 0; j < m_channel; j++)
{
m_resample_in_buf.get()[i+j] *= 1 - rate;
}
}
m_latency_queue->push(m_resample_in_buf.get(), sample_in_len);
m_latency_queue->pop(m_resample_in_buf.get(), sample_in_len);
{
std::unique_lock<std::mutex> lock(m_rvc_mutex);
m_out_queue->push(m_resample_in_buf.get(), sample_in_len);
}
// 此时对于rvc来说输入的数据不连贯了,所以清空内部数据重新搞
m_syn_state = RVC_LITE_RT_SYN_STATE_EFFECT;
m_rvc_inst->reset();
continue;
}
// 重采样到16k,此处采样率变低,所以不会出现sample_out_len > sample_in_len的情况
sample_out_len = m_resample16->get_out_samples(sample_in_len / m_channel);
m_resample16->resample(m_resample_in_buf.get(), sample_in_len / m_channel, m_resample_out_buf.get(),
sample_out_len);
m_input_queue->push(m_resample_out_buf.get(), sample_out_len);
rvc_process_step();
}
}
\ No newline at end of file
diff --git a/mnn_demo/third_party/espyin-v1.0/ESPYIN.h b/mnn_demo/third_party/espyin-v1.0/ESPYIN.h
index b3c57ef..5d159a7 100644
--- a/mnn_demo/third_party/espyin-v1.0/ESPYIN.h
+++ b/mnn_demo/third_party/espyin-v1.0/ESPYIN.h
@@ -1,65 +1,65 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
pYIN - A fundamental frequency estimator for monophonic audio
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef _ESPYIN_H_
#define _ESPYIN_H_
#include "ESYin.h"
#include <map>
using std::map;
struct ESFeature
{
std::vector<float> values;
};
typedef std::vector<ESFeature> ESFeatureList;
typedef std::map<int, ESFeatureList> ESFeatureSet;
class ESPYIN
{
public:
ESPYIN(float inputSampleRate, size_t stepSize, size_t blockSize, size_t fmin, size_t fmax);
- virtual ~ESPYIN();
+ ~ESPYIN();
void reset();
void updata(int reserve_frame_num);
ESFeatureSet process(const float * const inputBuffers);
ESFeatureSet getRemainingFeatures(int reso_type=1);
int getFrames();
protected:
size_t m_stepSize;
size_t m_blockSize;
float m_fmin;
float m_fmax;
ESYin m_yin;
mutable int m_oF0Candidates;
mutable int m_oF0Probs;
mutable int m_oVoicedProb;
mutable int m_oCandidateSalience;
mutable int m_oSmoothedPitchTrack;
float m_threshDistr;
float m_outputUnvoiced;
vector<vector<pair<double, double> > > m_pitchProb;
};
#endif
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sun, Jan 12, 08:33 (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1347190
Default Alt Text
(31 KB)
Attached To
R350 av_svc
Event Timeline
Log In to Comment