Page MenuHomePhabricator

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/AIMeiSheng/RawNet3/__pycache__/__init__.cpython-38.pyc b/AIMeiSheng/RawNet3/__pycache__/__init__.cpython-38.pyc
deleted file mode 100644
index b977952..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/__init__.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-38.pyc b/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-38.pyc
deleted file mode 100644
index 02da763..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-39.pyc b/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-39.pyc
deleted file mode 100644
index fabcfd3..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/cal_cos_distance_folder.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-38.pyc b/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-38.pyc
deleted file mode 100644
index 0003ccb..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-39.pyc b/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-39.pyc
deleted file mode 100644
index be84168..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/infererence_fang_meisheng.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/multi_threads_wraper.cpython-39.pyc b/AIMeiSheng/RawNet3/__pycache__/multi_threads_wraper.cpython-39.pyc
deleted file mode 100644
index ca69a96..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/multi_threads_wraper.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/utils.cpython-38.pyc b/AIMeiSheng/RawNet3/__pycache__/utils.cpython-38.pyc
deleted file mode 100644
index 1bf1e45..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/utils.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/__pycache__/utils.cpython-39.pyc b/AIMeiSheng/RawNet3/__pycache__/utils.cpython-39.pyc
deleted file mode 100644
index 231937c..0000000
Binary files a/AIMeiSheng/RawNet3/__pycache__/utils.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-38.pyc b/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-38.pyc
deleted file mode 100644
index e5499c1..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-39.pyc b/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-39.pyc
deleted file mode 100644
index 643c555..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/RawNet3.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-38.pyc b/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-38.pyc
deleted file mode 100644
index a29ed34..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-39.pyc b/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-39.pyc
deleted file mode 100644
index cffbcf6..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/RawNetBasicBlock.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-38.pyc b/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-38.pyc
deleted file mode 100644
index f00a24c..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-39.pyc b/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-39.pyc
deleted file mode 100644
index a0da605..0000000
Binary files a/AIMeiSheng/RawNet3/models/__pycache__/__init__.cpython-39.pyc and /dev/null differ
diff --git a/AIMeiSheng/diffuse_fang/__init__.py b/AIMeiSheng/diffuse_fang/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/AIMeiSheng/diffuse_fang/diffUse_fang.py b/AIMeiSheng/diffuse_fang/diffUse_fang.py
new file mode 100644
index 0000000..b216924
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffUse_fang.py
@@ -0,0 +1,42 @@
+from diffusion.wavenet import WaveNet
+from diffusion.diffusion import GaussianDiffusion
+
+import torch
+out_dims = 192#128 ##决定输出维度
+n_layers=20
+n_chans=384
+n_hidden=128#256 ###决定输入维度
+timesteps=1000
+k_step_max=1000
+
+###out: B x n_frames x feat, 推理的话returrn 目标数据,训练的时候return 是 mse loss
+##GaussianDiffusion 我做了更改推理的时候范围预测结果(1个),训练时候返回loss和重构预测的特征(2个)
+diff_decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden),timesteps=timesteps,k_step=k_step_max, out_dims=out_dims)
+
+gt_spec=None#这个是x0的数据,推理不需要,测试需要
+infer=True # train的时候设置成Fasle
+infer_speedup=10
+method='dpm-solver'
+k_step=100
+use_tqdm=True
+
+if __name__ == "__main__":
+
+ B = 32
+ n_frames = 120
+ n_unit = n_hidden
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ diff_decoder = diff_decoder.to(device)
+ x = torch.randn(B, n_frames,n_unit).to(device) ##input: B x n_frames x n_unit
+ print("@@@ input x shape:", x.shape)
+ # 生成标签数据(假设简单线性分类)
+ # Y = torch.randint(0, 2, (num_samples, output_dim)).float()
+ #gt_spec在训练的时候是label,infer的时候是None
+ #x = x.half()
+ #diff_decoder = diff_decoder.half()
+ out = diff_decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step,
+ use_tqdm=use_tqdm)
+ print("@@@ out shape:",out.shape) #torch.Size([32, 120, 128]) ###out: B x n_frames x feat
+ print("out:",out[0,0,:])
+
diff --git a/AIMeiSheng/diffuse_fang/diffUse_wraper.py b/AIMeiSheng/diffuse_fang/diffUse_wraper.py
new file mode 100644
index 0000000..87a8889
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffUse_wraper.py
@@ -0,0 +1,59 @@
+from diffuse_fang.diffusion.wavenet import WaveNet
+from diffuse_fang.diffusion.diffusion import GaussianDiffusion
+
+import torch
+
+out_dims = 192 ##决定输出维度
+n_layers=20
+n_chans=384
+n_hidden=192#256 ##决定输入维度
+timesteps=1000
+k_step_max=1000
+
+
+#class WaveNet(nn.Module):
+# def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
+
+###out: B x n_frames x feat, 推理的话returrn 目标数据,训练的时候return 是 mse loss
+#input size
+#output size:
+diff_decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden),timesteps=timesteps,k_step=k_step_max, out_dims=out_dims)
+
+'''
+gt_spec=None#这个是x0的数据,推理不需要,测试需要
+infer=True # train的时候设置成Fasle
+infer_speedup=10
+method='dpm-solver'
+k_step=100
+use_tqdm=True
+#'''
+
+class ddpm_para():
+ def __init__(self, gt_spec=None,infer=True,infer_speedup=10,method='dpm-solver',k_step=100,use_tqdm = True):
+ #self.use_tqdm = use_tqdm #True
+ self.gt_spec = gt_spec#None#这个是x0的数据,推理不需要,测试需要
+ self.infer = infer #True # train的时候设置成Fasle
+ self.infer_speedup = infer_speedup#10
+ self.method = method #'dpm-solver'
+ self.k_step = k_step
+ self.use_tqdm = use_tqdm
+
+
+if __name__ == "__main__":
+ ddpm_dp = ddpm_para()
+
+ B = 32
+ n_frames = 120
+ n_unit = 192
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+ diff_decoder = diff_decoder.to(device)
+ x = torch.randn(B, n_frames,n_unit).to(device) ##input: B x n_frames x n_unit
+ print("@@@ input x shape:", x.shape)
+ # 生成标签数据(假设简单线性分类)
+ # Y = torch.randint(0, 2, (num_samples, output_dim)).float()
+
+ out = diff_decoder(x, gt_spec=ddpm_dp.gt_spec, infer=ddpm_dp.infer, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=ddpm_dp.k_step, use_tqdm=ddpm_dp.use_tqdm)
+ print("@@@ out shape:",out.shape) #torch.Size([32, 120, 128]) ###out: B x n_frames x feat
+
+
diff --git a/AIMeiSheng/diffuse_fang/diffusion/__init__.py b/AIMeiSheng/diffuse_fang/diffusion/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/AIMeiSheng/diffuse_fang/diffusion/data_loaders.py b/AIMeiSheng/diffuse_fang/diffusion/data_loaders.py
new file mode 100644
index 0000000..9f00b9a
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/data_loaders.py
@@ -0,0 +1,288 @@
+import os
+import random
+
+import librosa
+import numpy as np
+import torch
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+from utils import repeat_expand_2d
+
+
+def traverse_dir(
+ root_dir,
+ extensions,
+ amount=None,
+ str_include=None,
+ str_exclude=None,
+ is_pure=False,
+ is_sort=False,
+ is_ext=True):
+
+ file_list = []
+ cnt = 0
+ for root, _, files in os.walk(root_dir):
+ for file in files:
+ if any([file.endswith(f".{ext}") for ext in extensions]):
+ # path
+ mix_path = os.path.join(root, file)
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
+
+ # amount
+ if (amount is not None) and (cnt == amount):
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+ # check string
+ if (str_include is not None) and (str_include not in pure_path):
+ continue
+ if (str_exclude is not None) and (str_exclude in pure_path):
+ continue
+
+ if not is_ext:
+ ext = pure_path.split('.')[-1]
+ pure_path = pure_path[:-(len(ext)+1)]
+ file_list.append(pure_path)
+ cnt += 1
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+
+def get_data_loaders(args, whole_audio=False):
+ data_train = AudioDataset(
+ filelists = args.data.training_files,
+ waveform_sec=args.data.duration,
+ hop_size=args.data.block_size,
+ sample_rate=args.data.sampling_rate,
+ load_all_data=args.train.cache_all_data,
+ whole_audio=whole_audio,
+ extensions=args.data.extensions,
+ n_spk=args.model.n_spk,
+ spk=args.spk,
+ device=args.train.cache_device,
+ fp16=args.train.cache_fp16,
+ unit_interpolate_mode = args.data.unit_interpolate_mode,
+ use_aug=True)
+ loader_train = torch.utils.data.DataLoader(
+ data_train ,
+ batch_size=args.train.batch_size if not whole_audio else 1,
+ shuffle=True,
+ num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
+ persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
+ pin_memory=True if args.train.cache_device=='cpu' else False
+ )
+ data_valid = AudioDataset(
+ filelists = args.data.validation_files,
+ waveform_sec=args.data.duration,
+ hop_size=args.data.block_size,
+ sample_rate=args.data.sampling_rate,
+ load_all_data=args.train.cache_all_data,
+ whole_audio=True,
+ spk=args.spk,
+ extensions=args.data.extensions,
+ unit_interpolate_mode = args.data.unit_interpolate_mode,
+ n_spk=args.model.n_spk)
+ loader_valid = torch.utils.data.DataLoader(
+ data_valid,
+ batch_size=1,
+ shuffle=False,
+ num_workers=0,
+ pin_memory=True
+ )
+ return loader_train, loader_valid
+
+
+class AudioDataset(Dataset):
+ def __init__(
+ self,
+ filelists,
+ waveform_sec,
+ hop_size,
+ sample_rate,
+ spk,
+ load_all_data=True,
+ whole_audio=False,
+ extensions=['wav'],
+ n_spk=1,
+ device='cpu',
+ fp16=False,
+ use_aug=False,
+ unit_interpolate_mode = 'left'
+ ):
+ super().__init__()
+
+ self.waveform_sec = waveform_sec
+ self.sample_rate = sample_rate
+ self.hop_size = hop_size
+ self.filelists = filelists
+ self.whole_audio = whole_audio
+ self.use_aug = use_aug
+ self.data_buffer={}
+ self.pitch_aug_dict = {}
+ self.unit_interpolate_mode = unit_interpolate_mode
+ # np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
+ if load_all_data:
+ print('Load all the data filelists:', filelists)
+ else:
+ print('Load the f0, volume data filelists:', filelists)
+ with open(filelists,"r") as f:
+ self.paths = f.read().splitlines()
+ for name_ext in tqdm(self.paths, total=len(self.paths)):
+ path_audio = name_ext
+ duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
+
+ path_f0 = name_ext + ".f0.npy"
+ f0,_ = np.load(path_f0,allow_pickle=True)
+ f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
+
+ path_volume = name_ext + ".vol.npy"
+ volume = np.load(path_volume)
+ volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
+
+ path_augvol = name_ext + ".aug_vol.npy"
+ aug_vol = np.load(path_augvol)
+ aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
+
+ if n_spk is not None and n_spk > 1:
+ spk_name = name_ext.split("/")[-2]
+ spk_id = spk[spk_name] if spk_name in spk else 0
+ if spk_id < 0 or spk_id >= n_spk:
+ raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
+ else:
+ spk_id = 0
+ spk_id = torch.LongTensor(np.array([spk_id])).to(device)
+
+ if load_all_data:
+ '''
+ audio, sr = librosa.load(path_audio, sr=self.sample_rate)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ audio = torch.from_numpy(audio).to(device)
+ '''
+ path_mel = name_ext + ".mel.npy"
+ mel = np.load(path_mel)
+ mel = torch.from_numpy(mel).to(device)
+
+ path_augmel = name_ext + ".aug_mel.npy"
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
+ aug_mel = np.array(aug_mel,dtype=float)
+ aug_mel = torch.from_numpy(aug_mel).to(device)
+ self.pitch_aug_dict[name_ext] = keyshift
+
+ path_units = name_ext + ".soft.pt"
+ units = torch.load(path_units).to(device)
+ units = units[0]
+ units = repeat_expand_2d(units,f0.size(0),unit_interpolate_mode).transpose(0,1)
+
+ if fp16:
+ mel = mel.half()
+ aug_mel = aug_mel.half()
+ units = units.half()
+
+ self.data_buffer[name_ext] = {
+ 'duration': duration,
+ 'mel': mel,
+ 'aug_mel': aug_mel,
+ 'units': units,
+ 'f0': f0,
+ 'volume': volume,
+ 'aug_vol': aug_vol,
+ 'spk_id': spk_id
+ }
+ else:
+ path_augmel = name_ext + ".aug_mel.npy"
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
+ self.pitch_aug_dict[name_ext] = keyshift
+ self.data_buffer[name_ext] = {
+ 'duration': duration,
+ 'f0': f0,
+ 'volume': volume,
+ 'aug_vol': aug_vol,
+ 'spk_id': spk_id
+ }
+
+
+ def __getitem__(self, file_idx):
+ name_ext = self.paths[file_idx]
+ data_buffer = self.data_buffer[name_ext]
+ # check duration. if too short, then skip
+ if data_buffer['duration'] < (self.waveform_sec + 0.1):
+ return self.__getitem__( (file_idx + 1) % len(self.paths))
+
+ # get item
+ return self.get_data(name_ext, data_buffer)
+
+ def get_data(self, name_ext, data_buffer):
+ name = os.path.splitext(name_ext)[0]
+ frame_resolution = self.hop_size / self.sample_rate
+ duration = data_buffer['duration']
+ waveform_sec = duration if self.whole_audio else self.waveform_sec
+
+ # load audio
+ idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
+ start_frame = int(idx_from / frame_resolution)
+ units_frame_len = int(waveform_sec / frame_resolution)
+ aug_flag = random.choice([True, False]) and self.use_aug
+ '''
+ audio = data_buffer.get('audio')
+ if audio is None:
+ path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
+ audio, sr = librosa.load(
+ path_audio,
+ sr = self.sample_rate,
+ offset = start_frame * frame_resolution,
+ duration = waveform_sec)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ # clip audio into N seconds
+ audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
+ audio = torch.from_numpy(audio).float()
+ else:
+ audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
+ '''
+ # load mel
+ mel_key = 'aug_mel' if aug_flag else 'mel'
+ mel = data_buffer.get(mel_key)
+ if mel is None:
+ mel = name_ext + ".mel.npy"
+ mel = np.load(mel)
+ mel = mel[start_frame : start_frame + units_frame_len]
+ mel = torch.from_numpy(mel).float()
+ else:
+ mel = mel[start_frame : start_frame + units_frame_len]
+
+ # load f0
+ f0 = data_buffer.get('f0')
+ aug_shift = 0
+ if aug_flag:
+ aug_shift = self.pitch_aug_dict[name_ext]
+ f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
+
+ # load units
+ units = data_buffer.get('units')
+ if units is None:
+ path_units = name_ext + ".soft.pt"
+ units = torch.load(path_units)
+ units = units[0]
+ units = repeat_expand_2d(units,f0.size(0),self.unit_interpolate_mode).transpose(0,1)
+
+ units = units[start_frame : start_frame + units_frame_len]
+
+ # load volume
+ vol_key = 'aug_vol' if aug_flag else 'volume'
+ volume = data_buffer.get(vol_key)
+ volume_frames = volume[start_frame : start_frame + units_frame_len]
+
+ # load spk_id
+ spk_id = data_buffer.get('spk_id')
+
+ # load shift
+ aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
+
+ return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
+
+ def __len__(self):
+ return len(self.paths)
\ No newline at end of file
diff --git a/AIMeiSheng/diffuse_fang/diffusion/diffusion.py b/AIMeiSheng/diffuse_fang/diffusion/diffusion.py
new file mode 100644
index 0000000..edb3be5
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/diffusion.py
@@ -0,0 +1,398 @@
+from collections import deque
+from functools import partial
+from inspect import isfunction
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+from tqdm import tqdm
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def extract(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def noise_like(shape, device, repeat=False):
+ def repeat_noise():
+ return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ def noise():
+ return torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
+
+
+def linear_beta_schedule(timesteps, max_beta=0.02):
+ """
+ linear schedule
+ """
+ betas = np.linspace(1e-4, max_beta, timesteps)
+ return betas
+
+
+def cosine_beta_schedule(timesteps, s=0.008):
+ """
+ cosine schedule
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
+ """
+ steps = timesteps + 1
+ x = np.linspace(0, steps, steps)
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
+ return np.clip(betas, a_min=0, a_max=0.999)
+
+
+beta_schedule = {
+ "cosine": cosine_beta_schedule,
+ "linear": linear_beta_schedule,
+}
+
+
+class GaussianDiffusion(nn.Module):
+ def __init__(self,
+ denoise_fn,
+ out_dims=128,
+ timesteps=1000,
+ k_step=1000,
+ max_beta=0.02,
+ spec_min=-12,
+ spec_max=2):
+
+ super().__init__()
+ self.denoise_fn = denoise_fn
+ self.out_dims = out_dims
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
+
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.k_step = k_step if k_step>0 and k_step<timesteps else timesteps
+
+ self.noise_list = deque(maxlen=4)
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
+
+ def q_mean_variance(self, x_start, t):
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, cond):
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
+
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, t, interval, cond):
+ """
+ Use the DDIM method from
+ """
+ a_t = extract(self.alphas_cumprod, t, x.shape)
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
+
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+ x_prev = a_prev.sqrt() * (x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt()-((1 - a_t) / a_t).sqrt()) * noise_pred)
+ return x_prev
+
+ @torch.no_grad()
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
+ """
+ Use the PLMS method from
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
+ """
+
+ def get_x_pred(x, noise_t, t):
+ a_t = extract(self.alphas_cumprod, t, x.shape)
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x + x_delta
+
+ return x_pred
+
+ noise_list = self.noise_list
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+
+ if len(noise_list) == 0:
+ x_pred = get_x_pred(x, noise_pred, t)
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
+ elif len(noise_list) == 1:
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
+ elif len(noise_list) == 2:
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
+ else:
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
+
+ x_prev = get_x_pred(x, noise_pred_prime, t)
+ noise_list.append(noise_pred)
+
+ return x_prev
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
+ )
+
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ x_recon = self.denoise_fn(x_noisy, t, cond)
+
+ if loss_type == 'l1':
+ loss = (noise - x_recon).abs().mean()
+ elif loss_type == 'l2':
+ loss = F.mse_loss(noise, x_recon)
+ else:
+ raise NotImplementedError()
+
+
+ return loss,noise
+
+ def forward(self,
+ condition,
+ gt_spec=None,
+ infer=True,
+ infer_speedup=10,
+ method='dpm-solver',
+ k_step=300,
+ use_tqdm=True):
+ """
+ conditioning diffusion, use fastspeech2 encoder output as the condition
+ """
+ cond = condition.transpose(1, 2)
+ b, device = condition.shape[0], condition.device
+
+ if not infer:
+ spec = self.norm_spec(gt_spec)
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
+
+ return self.p_losses(norm_spec, t, cond=cond)
+ else:
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
+
+ if gt_spec is None:
+ t = self.k_step
+ x = torch.randn(shape, device=device)
+ else:
+ t = k_step
+ norm_spec = self.norm_spec(gt_spec)
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
+
+ if method is not None and infer_speedup > 1:
+ if method == 'dpm-solver' or method == 'dpm-solver++':
+ from .dpm_solver_pytorch import (
+ DPM_Solver,
+ NoiseScheduleVP,
+ model_wrapper,
+ )
+ # 1. Define the noise schedule.
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
+
+ # 2. Convert your discrete-time `model` to the continuous-time
+ # noise prediction model. Here is an example for a diffusion model
+ # `model` with the noise prediction type ("noise") .
+ def my_wrapper(fn):
+ def wrapped(x, t, **kwargs):
+ ret = fn(x, t, **kwargs)
+ if use_tqdm:
+ self.bar.update(1)
+ return ret
+
+ return wrapped
+
+ model_fn = model_wrapper(
+ my_wrapper(self.denoise_fn),
+ noise_schedule,
+ model_type="noise", # or "x_start" or "v" or "score"
+ model_kwargs={"cond": cond}
+ )
+
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
+ # You can adjust the `steps` to balance the computation
+ # costs and the sample quality.
+ if method == 'dpm-solver':
+ dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
+ elif method == 'dpm-solver++':
+ dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
+
+ steps = t // infer_speedup
+ if use_tqdm:
+ self.bar = tqdm(desc="sample time step", total=steps)
+ x = dpm_solver.sample(
+ x,
+ steps=steps,
+ order=2,
+ skip_type="time_uniform",
+ method="multistep",
+ )
+ if use_tqdm:
+ self.bar.close()
+ elif method == 'pndm':
+ self.noise_list = deque(maxlen=4)
+ if use_tqdm:
+ for i in tqdm(
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
+ total=t // infer_speedup,
+ ):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ for i in reversed(range(0, t, infer_speedup)):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ elif method == 'ddim':
+ if use_tqdm:
+ for i in tqdm(
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
+ total=t // infer_speedup,
+ ):
+ x = self.p_sample_ddim(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ for i in reversed(range(0, t, infer_speedup)):
+ x = self.p_sample_ddim(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ elif method == 'unipc':
+ from .uni_pc import NoiseScheduleVP, UniPC, model_wrapper
+ # 1. Define the noise schedule.
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
+
+ # 2. Convert your discrete-time `model` to the continuous-time
+ # noise prediction model. Here is an example for a diffusion model
+ # `model` with the noise prediction type ("noise") .
+ def my_wrapper(fn):
+ def wrapped(x, t, **kwargs):
+ ret = fn(x, t, **kwargs)
+ if use_tqdm:
+ self.bar.update(1)
+ return ret
+
+ return wrapped
+
+ model_fn = model_wrapper(
+ my_wrapper(self.denoise_fn),
+ noise_schedule,
+ model_type="noise", # or "x_start" or "v" or "score"
+ model_kwargs={"cond": cond}
+ )
+
+ # 3. Define uni_pc and sample by multistep UniPC.
+ # You can adjust the `steps` to balance the computation
+ # costs and the sample quality.
+ uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
+
+ steps = t // infer_speedup
+ if use_tqdm:
+ self.bar = tqdm(desc="sample time step", total=steps)
+ x = uni_pc.sample(
+ x,
+ steps=steps,
+ order=2,
+ skip_type="time_uniform",
+ method="multistep",
+ )
+ if use_tqdm:
+ self.bar.close()
+ else:
+ raise NotImplementedError(method)
+ else:
+ if use_tqdm:
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ else:
+ for i in reversed(range(0, t)):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
+ return self.denorm_spec(x)
+
+ def norm_spec(self, x):
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
+
+ def denorm_spec(self, x):
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
diff --git a/AIMeiSheng/diffuse_fang/diffusion/diffusion_onnx.py b/AIMeiSheng/diffuse_fang/diffusion/diffusion_onnx.py
new file mode 100644
index 0000000..f01e463
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/diffusion_onnx.py
@@ -0,0 +1,614 @@
+import math
+from collections import deque
+from functools import partial
+from inspect import isfunction
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+from torch.nn import Conv1d, Mish
+from tqdm import tqdm
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def extract(a, t):
+ return a[t].reshape((1, 1, 1, 1))
+
+
+def noise_like(shape, device, repeat=False):
+ def repeat_noise():
+ return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ def noise():
+ return torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
+
+
+def linear_beta_schedule(timesteps, max_beta=0.02):
+ """
+ linear schedule
+ """
+ betas = np.linspace(1e-4, max_beta, timesteps)
+ return betas
+
+
+def cosine_beta_schedule(timesteps, s=0.008):
+ """
+ cosine schedule
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
+ """
+ steps = timesteps + 1
+ x = np.linspace(0, steps, steps)
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
+ return np.clip(betas, a_min=0, a_max=0.999)
+
+
+beta_schedule = {
+ "cosine": cosine_beta_schedule,
+ "linear": linear_beta_schedule,
+}
+
+
+def extract_1(a, t):
+ return a[t].reshape((1, 1, 1, 1))
+
+
+def predict_stage0(noise_pred, noise_pred_prev):
+ return (noise_pred + noise_pred_prev) / 2
+
+
+def predict_stage1(noise_pred, noise_list):
+ return (noise_pred * 3
+ - noise_list[-1]) / 2
+
+
+def predict_stage2(noise_pred, noise_list):
+ return (noise_pred * 23
+ - noise_list[-1] * 16
+ + noise_list[-2] * 5) / 12
+
+
+def predict_stage3(noise_pred, noise_list):
+ return (noise_pred * 55
+ - noise_list[-1] * 59
+ + noise_list[-2] * 37
+ - noise_list[-3] * 9) / 24
+
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+ self.half_dim = dim // 2
+ self.emb = 9.21034037 / (self.half_dim - 1)
+ self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
+ self.emb = self.emb.cpu()
+
+ def forward(self, x):
+ emb = self.emb * x
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class ResidualBlock(nn.Module):
+ def __init__(self, encoder_hidden, residual_channels, dilation):
+ super().__init__()
+ self.residual_channels = residual_channels
+ self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
+ self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
+ self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
+
+ def forward(self, x, conditioner, diffusion_step):
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
+ conditioner = self.conditioner_projection(conditioner)
+ y = x + diffusion_step
+ y = self.dilated_conv(y) + conditioner
+
+ gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+
+ y = torch.sigmoid(gate) * torch.tanh(filter_1)
+ y = self.output_projection(y)
+
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+
+ return (x + residual) / 1.41421356, skip
+
+
+class DiffNet(nn.Module):
+ def __init__(self, in_dims, n_layers, n_chans, n_hidden):
+ super().__init__()
+ self.encoder_hidden = n_hidden
+ self.residual_layers = n_layers
+ self.residual_channels = n_chans
+ self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
+ self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
+ dim = self.residual_channels
+ self.mlp = nn.Sequential(
+ nn.Linear(dim, dim * 4),
+ Mish(),
+ nn.Linear(dim * 4, dim)
+ )
+ self.residual_layers = nn.ModuleList([
+ ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
+ for i in range(self.residual_layers)
+ ])
+ self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
+ self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
+ nn.init.zeros_(self.output_projection.weight)
+
+ def forward(self, spec, diffusion_step, cond):
+ x = spec.squeeze(0)
+ x = self.input_projection(x) # x [B, residual_channel, T]
+ x = F.relu(x)
+ # skip = torch.randn_like(x)
+ diffusion_step = diffusion_step.float()
+ diffusion_step = self.diffusion_embedding(diffusion_step)
+ diffusion_step = self.mlp(diffusion_step)
+
+ x, skip = self.residual_layers[0](x, cond, diffusion_step)
+ # noinspection PyTypeChecker
+ for layer in self.residual_layers[1:]:
+ x, skip_connection = layer.forward(x, cond, diffusion_step)
+ skip = skip + skip_connection
+ x = skip / math.sqrt(len(self.residual_layers))
+ x = self.skip_projection(x)
+ x = F.relu(x)
+ x = self.output_projection(x) # [B, 80, T]
+ return x.unsqueeze(1)
+
+
+class AfterDiffusion(nn.Module):
+ def __init__(self, spec_max, spec_min, v_type='a'):
+ super().__init__()
+ self.spec_max = spec_max
+ self.spec_min = spec_min
+ self.type = v_type
+
+ def forward(self, x):
+ x = x.squeeze(1).permute(0, 2, 1)
+ mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
+ if self.type == 'nsf-hifigan-log10':
+ mel_out = mel_out * 0.434294
+ return mel_out.transpose(2, 1)
+
+
+class Pred(nn.Module):
+ def __init__(self, alphas_cumprod):
+ super().__init__()
+ self.alphas_cumprod = alphas_cumprod
+
+ def forward(self, x_1, noise_t, t_1, t_prev):
+ a_t = extract(self.alphas_cumprod, t_1).cpu()
+ a_prev = extract(self.alphas_cumprod, t_prev).cpu()
+ a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x_1 + x_delta.cpu()
+
+ return x_pred
+
+
+class GaussianDiffusion(nn.Module):
+ def __init__(self,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256,
+ timesteps=1000,
+ k_step=1000,
+ max_beta=0.02,
+ spec_min=-12,
+ spec_max=2):
+ super().__init__()
+ self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
+ self.out_dims = out_dims
+ self.mel_bins = out_dims
+ self.n_hidden = n_hidden
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
+
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.k_step = k_step
+
+ self.noise_list = deque(maxlen=4)
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
+ self.ad = AfterDiffusion(self.spec_max, self.spec_min)
+ self.xp = Pred(self.alphas_cumprod)
+
+ def q_mean_variance(self, x_start, t):
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, cond):
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
+
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
+ """
+ Use the PLMS method from
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
+ """
+
+ def get_x_pred(x, noise_t, t):
+ a_t = extract(self.alphas_cumprod, t)
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x + x_delta
+
+ return x_pred
+
+ noise_list = self.noise_list
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+
+ if len(noise_list) == 0:
+ x_pred = get_x_pred(x, noise_pred, t)
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
+ elif len(noise_list) == 1:
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
+ elif len(noise_list) == 2:
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
+ else:
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
+
+ x_prev = get_x_pred(x, noise_pred_prime, t)
+ noise_list.append(noise_pred)
+
+ return x_prev
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
+ )
+
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ x_recon = self.denoise_fn(x_noisy, t, cond)
+
+ if loss_type == 'l1':
+ loss = (noise - x_recon).abs().mean()
+ elif loss_type == 'l2':
+ loss = F.mse_loss(noise, x_recon)
+ else:
+ raise NotImplementedError()
+
+ return loss
+
+ def org_forward(self,
+ condition,
+ init_noise=None,
+ gt_spec=None,
+ infer=True,
+ infer_speedup=100,
+ method='pndm',
+ k_step=1000,
+ use_tqdm=True):
+ """
+ conditioning diffusion, use fastspeech2 encoder output as the condition
+ """
+ cond = condition
+ b, device = condition.shape[0], condition.device
+ if not infer:
+ spec = self.norm_spec(gt_spec)
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
+ return self.p_losses(norm_spec, t, cond=cond)
+ else:
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
+
+ if gt_spec is None:
+ t = self.k_step
+ if init_noise is None:
+ x = torch.randn(shape, device=device)
+ else:
+ x = init_noise
+ else:
+ t = k_step
+ norm_spec = self.norm_spec(gt_spec)
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
+
+ if method is not None and infer_speedup > 1:
+ if method == 'dpm-solver':
+ from .dpm_solver_pytorch import (
+ DPM_Solver,
+ NoiseScheduleVP,
+ model_wrapper,
+ )
+ # 1. Define the noise schedule.
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
+
+ # 2. Convert your discrete-time `model` to the continuous-time
+ # noise prediction model. Here is an example for a diffusion model
+ # `model` with the noise prediction type ("noise") .
+ def my_wrapper(fn):
+ def wrapped(x, t, **kwargs):
+ ret = fn(x, t, **kwargs)
+ if use_tqdm:
+ self.bar.update(1)
+ return ret
+
+ return wrapped
+
+ model_fn = model_wrapper(
+ my_wrapper(self.denoise_fn),
+ noise_schedule,
+ model_type="noise", # or "x_start" or "v" or "score"
+ model_kwargs={"cond": cond}
+ )
+
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
+ # You can adjust the `steps` to balance the computation
+ # costs and the sample quality.
+ dpm_solver = DPM_Solver(model_fn, noise_schedule)
+
+ steps = t // infer_speedup
+ if use_tqdm:
+ self.bar = tqdm(desc="sample time step", total=steps)
+ x = dpm_solver.sample(
+ x,
+ steps=steps,
+ order=3,
+ skip_type="time_uniform",
+ method="singlestep",
+ )
+ if use_tqdm:
+ self.bar.close()
+ elif method == 'pndm':
+ self.noise_list = deque(maxlen=4)
+ if use_tqdm:
+ for i in tqdm(
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
+ total=t // infer_speedup,
+ ):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ for i in reversed(range(0, t, infer_speedup)):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ raise NotImplementedError(method)
+ else:
+ if use_tqdm:
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ else:
+ for i in reversed(range(0, t)):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
+ return self.denorm_spec(x).transpose(2, 1)
+
+ def norm_spec(self, x):
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
+
+ def denorm_spec(self, x):
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
+
+ def get_x_pred(self, x_1, noise_t, t_1, t_prev):
+ a_t = extract(self.alphas_cumprod, t_1)
+ a_prev = extract(self.alphas_cumprod, t_prev)
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x_1 + x_delta
+ return x_pred
+
+ def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
+ cond = torch.randn([1, self.n_hidden, 10]).cpu()
+ if init_noise is None:
+ x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
+ else:
+ x = init_noise
+ pndms = 100
+
+ org_y_x = self.org_forward(cond, init_noise=x)
+
+ device = cond.device
+ n_frames = cond.shape[2]
+ step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
+
+ ot = step_range[0]
+ ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
+ if export_denoise:
+ torch.onnx.export(
+ self.denoise_fn,
+ (x.cpu(), ot_1.cpu(), cond.cpu()),
+ f"{project_name}_denoise.onnx",
+ input_names=["noise", "time", "condition"],
+ output_names=["noise_pred"],
+ dynamic_axes={
+ "noise": [3],
+ "condition": [2]
+ },
+ opset_version=16
+ )
+
+ for t in step_range:
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
+ noise_pred = self.denoise_fn(x, t_1, cond)
+ t_prev = t_1 - pndms
+ t_prev = t_prev * (t_prev > 0)
+ if plms_noise_stage == 0:
+ if export_pred:
+ torch.onnx.export(
+ self.xp,
+ (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
+ f"{project_name}_pred.onnx",
+ input_names=["noise", "noise_pred", "time", "time_prev"],
+ output_names=["noise_pred_o"],
+ dynamic_axes={
+ "noise": [3],
+ "noise_pred": [3]
+ },
+ opset_version=16
+ )
+
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
+
+ elif plms_noise_stage == 1:
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
+
+ elif plms_noise_stage == 2:
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
+
+ else:
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
+
+ noise_pred = noise_pred.unsqueeze(0)
+
+ if plms_noise_stage < 3:
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
+ plms_noise_stage = plms_noise_stage + 1
+
+ else:
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
+
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
+ if export_after:
+ torch.onnx.export(
+ self.ad,
+ x.cpu(),
+ f"{project_name}_after.onnx",
+ input_names=["x"],
+ output_names=["mel_out"],
+ dynamic_axes={
+ "x": [3]
+ },
+ opset_version=16
+ )
+ x = self.ad(x)
+
+ print((x == org_y_x).all())
+ return x
+
+ def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
+ cond = condition
+ x = init_noise
+
+ device = cond.device
+ n_frames = cond.shape[2]
+ step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
+
+ for t in step_range:
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
+ noise_pred = self.denoise_fn(x, t_1, cond)
+ t_prev = t_1 - pndms
+ t_prev = t_prev * (t_prev > 0)
+ if plms_noise_stage == 0:
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
+
+ elif plms_noise_stage == 1:
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
+
+ elif plms_noise_stage == 2:
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
+
+ else:
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
+
+ noise_pred = noise_pred.unsqueeze(0)
+
+ if plms_noise_stage < 3:
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
+ plms_noise_stage = plms_noise_stage + 1
+
+ else:
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
+
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
+ x = self.ad(x)
+ return x
diff --git a/AIMeiSheng/diffuse_fang/diffusion/dpm_solver_pytorch.py b/AIMeiSheng/diffuse_fang/diffusion/dpm_solver_pytorch.py
new file mode 100644
index 0000000..83ed73e
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/dpm_solver_pytorch.py
@@ -0,0 +1,1307 @@
+import torch
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ dtype=torch.float32,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+
+ t = self.inverse_lambda(lambda_t)
+
+ ===============================================================
+
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+
+ 1. For discrete-time DPMs:
+
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+
+ Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+
+
+ 2. For continuous-time DPMs:
+
+ We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise
+ schedule are the default settings in Yang Song's ScoreSDE:
+
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ T: A `float` number. The ending time of the forward process.
+
+ ===============================================================
+
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+
+ Example:
+
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+
+ """
+
+ if schedule not in ['discrete', 'linear']:
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear'".format(schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.T = 1.
+ self.log_alpha_array = self.numerical_clip_alpha(log_alphas).reshape((1, -1,)).to(dtype=dtype)
+ self.total_N = self.log_alpha_array.shape[1]
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
+ else:
+ self.T = 1.
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+
+ def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1):
+ """
+ For some beta schedules such as cosine schedule, the log-SNR has numerical isssues.
+ We clip the log-SNR near t=T within -5.1 to ensure the stability.
+ Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE.
+ """
+ log_sigmas = 0.5 * torch.log(1. - torch.exp(2. * log_alphas))
+ lambs = log_alphas - log_sigmas
+ idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda)
+ if idx > 0:
+ log_alphas = log_alphas[:-idx]
+ return log_alphas
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0**2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ condition=None,
+ unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+
+ We support four types of the diffusion model by setting `model_type`:
+
+ 1. "noise": noise prediction model. (Trained by predicting noise).
+
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+ arXiv preprint arXiv:2202.00512 (2022).
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+ arXiv preprint arXiv:2210.02303 (2022).
+
+ 4. "score": marginal score function. (Trained by denoising score matching).
+ Note that the score function and the noise prediction model follows a simple relationship:
+ ```
+ noise(x_t, t) = -sigma_t * score(x_t, t)
+ ```
+
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
+ 1. "uncond": unconditional sampling by DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ The input `classifier_fn` has the following format:
+ ``
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+ ``
+
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+ ``
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+ arXiv preprint arXiv:2207.12598 (2022).
+
+
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+ or continuous-time labels (i.e. epsilon to T).
+
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+ ``
+ def model_fn(x, t_continuous) -> noise:
+ t_input = get_model_input_time(t_continuous)
+ return noise_pred(model, x, t_input, **model_kwargs)
+ ``
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+
+ ===============================================================
+
+ Args:
+ model: A diffusion model with the corresponding format described above.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ model_type: A `str`. The parameterization type of the diffusion model.
+ "noise" or "x_start" or "v" or "score".
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
+ guidance_type: A `str`. The type of the guidance for sampling.
+ "uncond" or "classifier" or "classifier-free".
+ condition: A pytorch tensor. The condition for the guided sampling.
+ Only used for "classifier" or "classifier-free" guidance type.
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+ Only used for "classifier-free" guidance type.
+ guidance_scale: A `float`. The scale for the guided sampling.
+ classifier_fn: A classifier function. Only used for the classifier guidance.
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+ Returns:
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ return (x - expand_dims(alpha_t, x.dim()) * output) / expand_dims(sigma_t, x.dim())
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ return expand_dims(alpha_t, x.dim()) * output + expand_dims(sigma_t, x.dim()) * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ return -expand_dims(sigma_t, x.dim()) * output
+
+ def cond_grad_fn(x, t_input):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v", "score"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class DPM_Solver:
+ def __init__(
+ self,
+ model_fn,
+ noise_schedule,
+ algorithm_type="dpmsolver++",
+ correcting_x0_fn=None,
+ correcting_xt_fn=None,
+ thresholding_max_val=1.,
+ dynamic_thresholding_ratio=0.995,
+ ):
+ """Construct a DPM-Solver.
+
+ We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
+
+ We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
+ can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
+ dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
+ DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
+ DPMs (such as stable-diffusion).
+
+ To support advanced algorithms in image-to-image applications, we also support corrector functions for
+ both x0 and xt.
+
+ Args:
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
+ ``
+ def model_fn(x, t_continuous):
+ return noise
+ ``
+ The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
+ correcting_x0_fn: A `str` or a function with the following format:
+ ```
+ def correcting_x0_fn(x0, t):
+ x0_new = ...
+ return x0_new
+ ```
+ This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
+ ```
+ x0_pred = data_pred_model(xt, t)
+ if correcting_x0_fn is not None:
+ x0_pred = correcting_x0_fn(x0_pred, t)
+ xt_1 = update(x0_pred, xt, t)
+ ```
+ If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
+ correcting_xt_fn: A function with the following format:
+ ```
+ def correcting_xt_fn(xt, t, step):
+ x_new = ...
+ return x_new
+ ```
+ This function is to correct the intermediate samples xt at each sampling step. e.g.,
+ ```
+ xt = ...
+ xt = correcting_xt_fn(xt, t, step)
+ ```
+ thresholding_max_val: A `float`. The max value for thresholding.
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
+ dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
+
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
+ Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
+ with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
+ """
+ self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
+ self.noise_schedule = noise_schedule
+ assert algorithm_type in ["dpmsolver", "dpmsolver++"]
+ self.algorithm_type = algorithm_type
+ if correcting_x0_fn == "dynamic_thresholding":
+ self.correcting_x0_fn = self.dynamic_thresholding_fn
+ else:
+ self.correcting_x0_fn = correcting_x0_fn
+ self.correcting_xt_fn = correcting_xt_fn
+ self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
+ self.thresholding_max_val = thresholding_max_val
+
+ def dynamic_thresholding_fn(self, x0, t):
+ """
+ The dynamic thresholding method.
+ """
+ dims = x0.dim()
+ p = self.dynamic_thresholding_ratio
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with corrector).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - sigma_t * noise) / alpha_t
+ if self.correcting_x0_fn is not None:
+ x0 = self.correcting_x0_fn(x0, t)
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.algorithm_type == "dpmsolver++":
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+
+ Args:
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ N: A `int`. The total number of the spacing of the time steps.
+ device: A torch device.
+ Returns:
+ A pytorch tensor of the time steps, with the shape (N + 1,).
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
+ - If order == 1:
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
+ - If order == 2:
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If order == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
+
+ ============================================
+ Args:
+ order: A `int`. The max order for the solver (2 or 3).
+ steps: A `int`. The total number of function evaluations (NFE).
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ device: A torch device.
+ Returns:
+ orders: A list of the solver order of each step.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3,] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3,] * (K - 1) + [1]
+ else:
+ orders = [3,] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2,] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2,] * (K - 1) + [1]
+ elif order == 1:
+ K = 1
+ orders = [1,] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_to_zero_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
+ """
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (1,).
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ if self.algorithm_type == "dpmsolver++":
+ phi_1 = torch.expm1(-h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ sigma_t / sigma_s * x
+ - alpha_t * phi_1 * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+ else:
+ phi_1 = torch.expm1(h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ torch.exp(log_alpha_t - log_alpha_s) * x
+ - (sigma_t * phi_1) * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
+ """
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (1,).
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ r1: A `float`. The hyperparameter of the second-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpmsolver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 0.5
+ ns = self.noise_schedule
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
+
+ if self.algorithm_type == "dpmsolver++":
+ phi_11 = torch.expm1(-r1 * h)
+ phi_1 = torch.expm1(-h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ (sigma_s1 / sigma_s) * x
+ - (alpha_s1 * phi_11) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ (sigma_t / sigma_s) * x
+ - (alpha_t * phi_1) * model_s
+ - (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ (sigma_t / sigma_s) * x
+ - (alpha_t * phi_1) * model_s
+ + (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_1 = torch.expm1(h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ torch.exp(log_alpha_s1 - log_alpha_s) * x
+ - (sigma_s1 * phi_11) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ torch.exp(log_alpha_t - log_alpha_s) * x
+ - (sigma_t * phi_1) * model_s
+ - (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ torch.exp(log_alpha_t - log_alpha_s) * x
+ - (sigma_t * phi_1) * model_s
+ - (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
+ """
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (1,).
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ r1: A `float`. The hyperparameter of the third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpmsolver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 1. / 3.
+ if r2 is None:
+ r2 = 2. / 3.
+ ns = self.noise_schedule
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ lambda_s2 = lambda_s + r2 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ s2 = ns.inverse_lambda(lambda_s2)
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
+
+ if self.algorithm_type == "dpmsolver++":
+ phi_11 = torch.expm1(-r1 * h)
+ phi_12 = torch.expm1(-r2 * h)
+ phi_1 = torch.expm1(-h)
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
+ phi_2 = phi_1 / h + 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ (sigma_s1 / sigma_s) * x
+ - (alpha_s1 * phi_11) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ (sigma_s2 / sigma_s) * x
+ - (alpha_s2 * phi_12) * model_s
+ + r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ (sigma_t / sigma_s) * x
+ - (alpha_t * phi_1) * model_s
+ + (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ (sigma_t / sigma_s) * x
+ - (alpha_t * phi_1) * model_s
+ + (alpha_t * phi_2) * D1
+ - (alpha_t * phi_3) * D2
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_12 = torch.expm1(r2 * h)
+ phi_1 = torch.expm1(h)
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
+ phi_2 = phi_1 / h - 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ (torch.exp(log_alpha_s1 - log_alpha_s)) * x
+ - (sigma_s1 * phi_11) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ (torch.exp(log_alpha_s2 - log_alpha_s)) * x
+ - (sigma_s2 * phi_12) * model_s
+ - r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
+ - (sigma_t * phi_1) * model_s
+ - (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
+ - (sigma_t * phi_1) * model_s
+ - (sigma_t * phi_2) * D1
+ - (sigma_t * phi_3) * D2
+ )
+
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
+ else:
+ return x_t
+
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
+ """
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpmsolver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
+ ns = self.noise_schedule
+ model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
+ t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0 = h_0 / h
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
+ if self.algorithm_type == "dpmsolver++":
+ phi_1 = torch.expm1(-h)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ (sigma_t / sigma_prev_0) * x
+ - (alpha_t * phi_1) * model_prev_0
+ - 0.5 * (alpha_t * phi_1) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ (sigma_t / sigma_prev_0) * x
+ - (alpha_t * phi_1) * model_prev_0
+ + (alpha_t * (phi_1 / h + 1.)) * D1_0
+ )
+ else:
+ phi_1 = torch.expm1(h)
+ if solver_type == 'dpmsolver':
+ x_t = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * phi_1) * model_prev_0
+ - 0.5 * (sigma_t * phi_1) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * phi_1) * model_prev_0
+ - (sigma_t * (phi_1 / h - 1.)) * D1_0
+ )
+ return x_t
+
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
+ """
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_1 = lambda_prev_1 - lambda_prev_2
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0, r1 = h_0 / h, h_1 / h
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
+ D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
+ D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
+ if self.algorithm_type == "dpmsolver++":
+ phi_1 = torch.expm1(-h)
+ phi_2 = phi_1 / h + 1.
+ phi_3 = phi_2 / h - 0.5
+ x_t = (
+ (sigma_t / sigma_prev_0) * x
+ - (alpha_t * phi_1) * model_prev_0
+ + (alpha_t * phi_2) * D1
+ - (alpha_t * phi_3) * D2
+ )
+ else:
+ phi_1 = torch.expm1(h)
+ phi_2 = phi_1 / h - 1.
+ phi_3 = phi_2 / h - 0.5
+ x_t = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * phi_1) * model_prev_0
+ - (sigma_t * phi_2) * D1
+ - (sigma_t * phi_3) * D2
+ )
+ return x_t
+
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
+ """
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (1,).
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
+ elif order == 2:
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
+ elif order == 3:
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
+ """
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
+ t: A pytorch tensor. The ending time, with the shape (1,).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
+ elif order == 2:
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ elif order == 3:
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
+ """
+ The adaptive step size solver based on singlestep DPM-Solver.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `t_T`.
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ h_init: A `float`. The initial step size (for logSNR).
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
+ Returns:
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
+
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
+ """
+ ns = self.noise_schedule
+ s = t_T * torch.ones((1,)).to(x)
+ lambda_s = ns.marginal_lambda(s)
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
+ h = h_init * torch.ones_like(s).to(x)
+ x_prev = x
+ nfe = 0
+ if order == 2:
+ r1 = 0.5
+ def lower_update(x, s, t):
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=True)
+ def higher_update(x, s, t, **kwargs):
+ return self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
+ elif order == 3:
+ r1, r2 = 1. / 3., 2. / 3.
+ def lower_update(x, s, t):
+ return self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
+ def higher_update(x, s, t, **kwargs):
+ return self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
+ else:
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
+ while torch.abs((s - t_0)).mean() > t_err:
+ t = ns.inverse_lambda(lambda_s + h)
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
+ def norm_fn(v):
+ return torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
+ E = norm_fn((x_higher - x_lower) / delta).max()
+ if torch.all(E <= 1.):
+ x = x_higher
+ s = t
+ x_prev = x_lower
+ lambda_s = ns.marginal_lambda(s)
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
+ nfe += order
+ print('adaptive solver nfe', nfe)
+ return x
+
+ def add_noise(self, x, t, noise=None):
+ """
+ Compute the noised input xt = alpha_t * x + sigma_t * noise.
+
+ Args:
+ x: A `torch.Tensor` with shape `(batch_size, *shape)`.
+ t: A `torch.Tensor` with shape `(t_size,)`.
+ Returns:
+ xt with shape `(t_size, batch_size, *shape)`.
+ """
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ if noise is None:
+ noise = torch.randn((t.shape[0], *x.shape), device=x.device)
+ x = x.reshape((-1, *x.shape))
+ xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
+ if t.shape[0] == 1:
+ return xt.squeeze(0)
+ else:
+ return xt
+
+ def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
+ atol=0.0078, rtol=0.05, return_intermediate=False,
+ ):
+ """
+ Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
+ For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
+ """
+ t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
+ t_T = self.noise_schedule.T if t_end is None else t_end
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
+ return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
+ method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
+ atol=atol, rtol=rtol, return_intermediate=return_intermediate)
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
+ atol=0.0078, rtol=0.05, return_intermediate=False,
+ ):
+ """
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
+
+ =====================================================
+
+ We support the following algorithms for both noise prediction model and data prediction model:
+ - 'singlestep':
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
+ The total number of function evaluations (NFE) == `steps`.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ - If `order` == 1:
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If `order` == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
+ - 'multistep':
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
+ We initialize the first `order` values by lower order multistep solvers.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ Denote K = steps.
+ - If `order` == 1:
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
+ - If `order` == 3:
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
+ - 'singlestep_fixed':
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
+ - 'adaptive':
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
+ (NFE) and the sample quality.
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
+
+ =====================================================
+
+ Some advices for choosing the algorithm:
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
+ Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
+ e.g., DPM-Solver:
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
+ skip_type='time_uniform', method='singlestep')
+ e.g., DPM-Solver++:
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
+ skip_type='time_uniform', method='singlestep')
+ - For **guided sampling with large guidance scale** by DPMs:
+ Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
+ e.g.
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
+ skip_type='time_uniform', method='multistep')
+
+ We support three types of `skip_type`:
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
+ - 'time_quadratic': quadratic time for the time steps.
+
+ =====================================================
+ Args:
+ x: A pytorch tensor. The initial value at time `t_start`
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
+ steps: A `int`. The total number of function evaluations (NFE).
+ t_start: A `float`. The starting time of the sampling.
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
+ t_end: A `float`. The ending time of the sampling.
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
+ For discrete-time DPMs:
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
+ For continuous-time DPMs:
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
+ order: A `int`. The order of DPM-Solver.
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
+
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
+ (such as CIFAR-10). However, we observed that such trick does not matter for
+ high-resolutional images. As it needs an additional NFE, we do not recommend
+ it for high-resolutional images.
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
+ (especially for steps <= 10). So we recommend to set it to be `True`.
+ solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ return_intermediate: A `bool`. Whether to save the xt at each step.
+ When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
+ Returns:
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
+
+ """
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
+ if return_intermediate:
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
+ if self.correcting_xt_fn is not None:
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
+ device = x.device
+ intermediates = []
+ with torch.no_grad():
+ if method == 'adaptive':
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
+ elif method == 'multistep':
+ assert steps >= order
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ assert timesteps.shape[0] - 1 == steps
+ # Init the initial values.
+ step = 0
+ t = timesteps[step]
+ t_prev_list = [t]
+ model_prev_list = [self.model_fn(x, t)]
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ # Init the first `order` values by lower order multistep DPM-Solver.
+ for step in range(1, order):
+ t = timesteps[step]
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ t_prev_list.append(t)
+ model_prev_list.append(self.model_fn(x, t))
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
+ for step in range(order, steps + 1):
+ t = timesteps[step]
+ # We only use lower order for steps < 10
+ if lower_order_final and steps < 10:
+ step_order = min(order, steps + 1 - step)
+ else:
+ step_order = order
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ model_prev_list[-1] = self.model_fn(x, t)
+ elif method in ['singlestep', 'singlestep_fixed']:
+ if method == 'singlestep':
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
+ elif method == 'singlestep_fixed':
+ K = steps // order
+ orders = [order,] * K
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
+ for step, order in enumerate(orders):
+ s, t = timesteps_outer[step], timesteps_outer[step + 1]
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
+ h = lambda_inner[-1] - lambda_inner[0]
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
+ x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ else:
+ raise ValueError("Got wrong method {}".format(method))
+ if denoise_to_zero:
+ t = torch.ones((1,)).to(device) * t_0
+ x = self.denoise_to_zero_fn(x, t)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step + 1)
+ if return_intermediate:
+ intermediates.append(x)
+ if return_intermediate:
+ return x, intermediates
+ else:
+ return x
+
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,)*(dims - 1)]
\ No newline at end of file
diff --git a/AIMeiSheng/diffuse_fang/diffusion/how to export onnx.md b/AIMeiSheng/diffuse_fang/diffusion/how to export onnx.md
new file mode 100644
index 0000000..5aae72c
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/how to export onnx.md
@@ -0,0 +1,4 @@
+- Open [onnx_export](onnx_export.py)
+- project_name = "dddsp" change "project_name" to your project name
+- model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
+- Run
\ No newline at end of file
diff --git a/AIMeiSheng/diffuse_fang/diffusion/infer_gt_mel.py b/AIMeiSheng/diffuse_fang/diffusion/infer_gt_mel.py
new file mode 100644
index 0000000..0bdf1fe
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/infer_gt_mel.py
@@ -0,0 +1,74 @@
+import torch
+import torch.nn.functional as F
+
+from diffusion.unit2mel import load_model_vocoder
+
+
+class DiffGtMel:
+ def __init__(self, project_path=None, device=None):
+ self.project_path = project_path
+ if device is not None:
+ self.device = device
+ else:
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.model = None
+ self.vocoder = None
+ self.args = None
+
+ def flush_model(self, project_path, ddsp_config=None):
+ if (self.model is None) or (project_path != self.project_path):
+ model, vocoder, args = load_model_vocoder(project_path, device=self.device)
+ if self.check_args(ddsp_config, args):
+ self.model = model
+ self.vocoder = vocoder
+ self.args = args
+
+ def check_args(self, args1, args2):
+ if args1.data.block_size != args2.data.block_size:
+ raise ValueError("DDSP与DIFF模型的block_size不一致")
+ if args1.data.sampling_rate != args2.data.sampling_rate:
+ raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
+ if args1.data.encoder != args2.data.encoder:
+ raise ValueError("DDSP与DIFF模型的encoder不一致")
+ return True
+
+ def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
+ spk_mix_dict=None, start_frame=0):
+ input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
+ out_mel = self.model(
+ hubert,
+ f0,
+ volume,
+ spk_id=spk_id,
+ spk_mix_dict=spk_mix_dict,
+ gt_spec=input_mel,
+ infer=True,
+ infer_speedup=acc,
+ method=method,
+ k_step=k_step,
+ use_tqdm=False)
+ if start_frame > 0:
+ out_mel = out_mel[:, start_frame:, :]
+ f0 = f0[:, start_frame:, :]
+ output = self.vocoder.infer(out_mel, f0)
+ if start_frame > 0:
+ output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
+ return output
+
+ def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
+ use_silence=False, spk_mix_dict=None):
+ start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
+ if use_silence:
+ audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
+ f0 = f0[:, start_frame:, :]
+ hubert = hubert[:, start_frame:, :]
+ volume = volume[:, start_frame:, :]
+ _start_frame = 0
+ else:
+ _start_frame = start_frame
+ audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
+ method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
+ if use_silence:
+ if start_frame > 0:
+ audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
+ return audio
diff --git a/AIMeiSheng/diffuse_fang/diffusion/logger/__init__.py b/AIMeiSheng/diffuse_fang/diffusion/logger/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/AIMeiSheng/diffuse_fang/diffusion/logger/saver.py b/AIMeiSheng/diffuse_fang/diffusion/logger/saver.py
new file mode 100644
index 0000000..954ce99
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/logger/saver.py
@@ -0,0 +1,145 @@
+'''
+author: wayn391@mastertones
+'''
+
+import datetime
+import os
+import time
+
+import matplotlib.pyplot as plt
+import torch
+import yaml
+from torch.utils.tensorboard import SummaryWriter
+
+
+class Saver(object):
+ def __init__(
+ self,
+ args,
+ initial_global_step=-1):
+
+ self.expdir = args.env.expdir
+ self.sample_rate = args.data.sampling_rate
+
+ # cold start
+ self.global_step = initial_global_step
+ self.init_time = time.time()
+ self.last_time = time.time()
+
+ # makedirs
+ os.makedirs(self.expdir, exist_ok=True)
+
+ # path
+ self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
+
+ # ckpt
+ os.makedirs(self.expdir, exist_ok=True)
+
+ # writer
+ self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
+
+ # save config
+ path_config = os.path.join(self.expdir, 'config.yaml')
+ with open(path_config, "w") as out_config:
+ yaml.dump(dict(args), out_config)
+
+
+ def log_info(self, msg):
+ '''log method'''
+ if isinstance(msg, dict):
+ msg_list = []
+ for k, v in msg.items():
+ tmp_str = ''
+ if isinstance(v, int):
+ tmp_str = '{}: {:,}'.format(k, v)
+ else:
+ tmp_str = '{}: {}'.format(k, v)
+
+ msg_list.append(tmp_str)
+ msg_str = '\n'.join(msg_list)
+ else:
+ msg_str = msg
+
+ # dsplay
+ print(msg_str)
+
+ # save
+ with open(self.path_log_info, 'a') as fp:
+ fp.write(msg_str+'\n')
+
+ def log_value(self, dict):
+ for k, v in dict.items():
+ self.writer.add_scalar(k, v, self.global_step)
+
+ def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
+ spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
+ spec = spec_cat[0]
+ if isinstance(spec, torch.Tensor):
+ spec = spec.cpu().numpy()
+ fig = plt.figure(figsize=(12, 9))
+ plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
+ plt.tight_layout()
+ self.writer.add_figure(name, fig, self.global_step)
+
+ def log_audio(self, dict):
+ for k, v in dict.items():
+ self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
+
+ def get_interval_time(self, update=True):
+ cur_time = time.time()
+ time_interval = cur_time - self.last_time
+ if update:
+ self.last_time = cur_time
+ return time_interval
+
+ def get_total_time(self, to_str=True):
+ total_time = time.time() - self.init_time
+ if to_str:
+ total_time = str(datetime.timedelta(
+ seconds=total_time))[:-5]
+ return total_time
+
+ def save_model(
+ self,
+ model,
+ optimizer,
+ name='model',
+ postfix='',
+ to_json=False):
+ # path
+ if postfix:
+ postfix = '_' + postfix
+ path_pt = os.path.join(
+ self.expdir , name+postfix+'.pt')
+
+ # check
+ print(' [*] model checkpoint saved: {}'.format(path_pt))
+
+ # save
+ if optimizer is not None:
+ torch.save({
+ 'global_step': self.global_step,
+ 'model': model.state_dict(),
+ 'optimizer': optimizer.state_dict()}, path_pt)
+ else:
+ torch.save({
+ 'global_step': self.global_step,
+ 'model': model.state_dict()}, path_pt)
+
+
+ def delete_model(self, name='model', postfix=''):
+ # path
+ if postfix:
+ postfix = '_' + postfix
+ path_pt = os.path.join(
+ self.expdir , name+postfix+'.pt')
+
+ # delete
+ if os.path.exists(path_pt):
+ os.remove(path_pt)
+ print(' [*] model checkpoint deleted: {}'.format(path_pt))
+
+ def global_step_increment(self):
+ self.global_step += 1
+
+
diff --git a/AIMeiSheng/diffuse_fang/diffusion/logger/utils.py b/AIMeiSheng/diffuse_fang/diffusion/logger/utils.py
new file mode 100644
index 0000000..a907de7
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/logger/utils.py
@@ -0,0 +1,127 @@
+import json
+import os
+
+import torch
+import yaml
+
+
+def traverse_dir(
+ root_dir,
+ extensions,
+ amount=None,
+ str_include=None,
+ str_exclude=None,
+ is_pure=False,
+ is_sort=False,
+ is_ext=True):
+
+ file_list = []
+ cnt = 0
+ for root, _, files in os.walk(root_dir):
+ for file in files:
+ if any([file.endswith(f".{ext}") for ext in extensions]):
+ # path
+ mix_path = os.path.join(root, file)
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
+
+ # amount
+ if (amount is not None) and (cnt == amount):
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+ # check string
+ if (str_include is not None) and (str_include not in pure_path):
+ continue
+ if (str_exclude is not None) and (str_exclude in pure_path):
+ continue
+
+ if not is_ext:
+ ext = pure_path.split('.')[-1]
+ pure_path = pure_path[:-(len(ext)+1)]
+ file_list.append(pure_path)
+ cnt += 1
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def get_network_paras_amount(model_dict):
+ info = dict()
+ for model_name, model in model_dict.items():
+ # all_params = sum(p.numel() for p in model.parameters())
+ trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
+
+ info[model_name] = trainable_params
+ return info
+
+
+def load_config(path_config):
+ with open(path_config, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+ # print(args)
+ return args
+
+def save_config(path_config,config):
+ config = dict(config)
+ with open(path_config, "w") as f:
+ yaml.dump(config, f)
+
+def to_json(path_params, path_json):
+ params = torch.load(path_params, map_location=torch.device('cpu'))
+ raw_state_dict = {}
+ for k, v in params.items():
+ val = v.flatten().numpy().tolist()
+ raw_state_dict[k] = val
+
+ with open(path_json, 'w') as outfile:
+ json.dump(raw_state_dict, outfile,indent= "\t")
+
+
+def convert_tensor_to_numpy(tensor, is_squeeze=True):
+ if is_squeeze:
+ tensor = tensor.squeeze()
+ if tensor.requires_grad:
+ tensor = tensor.detach()
+ if tensor.is_cuda:
+ tensor = tensor.cpu()
+ return tensor.numpy()
+
+
+def load_model(
+ expdir,
+ model,
+ optimizer,
+ name='model',
+ postfix='',
+ device='cpu'):
+ if postfix == '':
+ postfix = '_' + postfix
+ path = os.path.join(expdir, name+postfix)
+ path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
+ global_step = 0
+ if len(path_pt) > 0:
+ steps = [s[len(path):] for s in path_pt]
+ maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
+ if maxstep >= 0:
+ path_pt = path+str(maxstep)+'.pt'
+ else:
+ path_pt = path+'best.pt'
+ print(' [*] restoring model from', path_pt)
+ ckpt = torch.load(path_pt, map_location=torch.device(device))
+ global_step = ckpt['global_step']
+ model.load_state_dict(ckpt['model'], strict=False)
+ if ckpt.get("optimizer") is not None:
+ optimizer.load_state_dict(ckpt['optimizer'])
+ return global_step, model, optimizer
diff --git a/AIMeiSheng/diffuse_fang/diffusion/onnx_export.py b/AIMeiSheng/diffuse_fang/diffusion/onnx_export.py
new file mode 100644
index 0000000..6a4ea22
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/onnx_export.py
@@ -0,0 +1,235 @@
+import os
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import yaml
+from diffusion_onnx import GaussianDiffusion
+
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def load_model_vocoder(
+ model_path,
+ device='cpu'):
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
+ with open(config_file, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+
+ # load model
+ model = Unit2Mel(
+ args.data.encoder_out_channels,
+ args.model.n_spk,
+ args.model.use_pitch_aug,
+ 128,
+ args.model.n_layers,
+ args.model.n_chans,
+ args.model.n_hidden,
+ args.model.timesteps,
+ args.model.k_step_max)
+
+ print(' [Loading] ' + model_path)
+ ckpt = torch.load(model_path, map_location=torch.device(device))
+ model.to(device)
+ model.load_state_dict(ckpt['model'])
+ model.eval()
+ return model, args
+
+
+class Unit2Mel(nn.Module):
+ def __init__(
+ self,
+ input_channel,
+ n_spk,
+ use_pitch_aug=False,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256,
+ timesteps=1000,
+ k_step_max=1000):
+ super().__init__()
+
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
+ self.f0_embed = nn.Linear(1, n_hidden)
+ self.volume_embed = nn.Linear(1, n_hidden)
+ if use_pitch_aug:
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
+ else:
+ self.aug_shift_embed = None
+ self.n_spk = n_spk
+ if n_spk is not None and n_spk > 1:
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
+
+ self.timesteps = timesteps if timesteps is not None else 1000
+ self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max<self.timesteps else self.timesteps
+
+
+ # diffusion
+ self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden,self.timesteps,self.k_step_max)
+ self.hidden_size = n_hidden
+ self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
+
+
+
+ def forward(self, units, mel2ph, f0, volume, g = None):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+
+ decoder_inp = F.pad(units, [0, 0, 1, 0])
+ mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
+ units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
+
+ x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
+
+ if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
+ g = g * self.speaker_map # [N, S, B, 1, H]
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
+ x = x.transpose(1, 2) + g
+ return x
+ else:
+ return x.transpose(1, 2)
+
+
+ def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
+ if self.n_spk is not None and self.n_spk > 1:
+ if spk_mix_dict is not None:
+ spk_embed_mix = torch.zeros((1,1,self.hidden_size))
+ for k, v in spk_mix_dict.items():
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
+ spk_embeddd = self.spk_embed(spk_id_torch)
+ self.speaker_map[k] = spk_embeddd
+ spk_embed_mix = spk_embed_mix + v * spk_embeddd
+ x = x + spk_embed_mix
+ else:
+ x = x + self.spk_embed(spk_id - 1)
+ self.speaker_map = self.speaker_map.unsqueeze(0)
+ self.speaker_map = self.speaker_map.detach()
+ return x.transpose(1, 2)
+
+ def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
+ hubert_hidden_size = 768
+ n_frames = 100
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
+ f0 = torch.randn((1, n_frames))
+ volume = torch.randn((1, n_frames))
+ spk_mix = []
+ spks = {}
+ if self.n_spk is not None and self.n_spk > 1:
+ for i in range(self.n_spk):
+ spk_mix.append(1.0/float(self.n_spk))
+ spks.update({i:1.0/float(self.n_spk)})
+ spk_mix = torch.tensor(spk_mix)
+ spk_mix = spk_mix.repeat(n_frames, 1)
+ self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
+ self.forward(hubert, mel2ph, f0, volume, spk_mix)
+ if export_encoder:
+ torch.onnx.export(
+ self,
+ (hubert, mel2ph, f0, volume, spk_mix),
+ f"{project_name}_encoder.onnx",
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
+ output_names=["mel_pred"],
+ dynamic_axes={
+ "hubert": [1],
+ "f0": [1],
+ "volume": [1],
+ "mel2ph": [1],
+ "spk_mix": [0],
+ },
+ opset_version=16
+ )
+
+ self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
+
+ def ExportOnnx(self, project_name=None):
+ hubert_hidden_size = 768
+ n_frames = 100
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
+ f0 = torch.randn((1, n_frames))
+ volume = torch.randn((1, n_frames))
+ spk_mix = []
+ spks = {}
+ if self.n_spk is not None and self.n_spk > 1:
+ for i in range(self.n_spk):
+ spk_mix.append(1.0/float(self.n_spk))
+ spks.update({i:1.0/float(self.n_spk)})
+ spk_mix = torch.tensor(spk_mix)
+ self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
+ self.forward(hubert, mel2ph, f0, volume, spk_mix)
+
+ torch.onnx.export(
+ self,
+ (hubert, mel2ph, f0, volume, spk_mix),
+ f"{project_name}_encoder.onnx",
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
+ output_names=["mel_pred"],
+ dynamic_axes={
+ "hubert": [1],
+ "f0": [1],
+ "volume": [1],
+ "mel2ph": [1]
+ },
+ opset_version=16
+ )
+
+ condition = torch.randn(1,self.decoder.n_hidden,n_frames)
+ noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
+ pndm_speedup = torch.LongTensor([100])
+ K_steps = torch.LongTensor([1000])
+ self.decoder = torch.jit.script(self.decoder)
+ self.decoder(condition, noise, pndm_speedup, K_steps)
+
+ torch.onnx.export(
+ self.decoder,
+ (condition, noise, pndm_speedup, K_steps),
+ f"{project_name}_diffusion.onnx",
+ input_names=["condition", "noise", "pndm_speedup", "K_steps"],
+ output_names=["mel"],
+ dynamic_axes={
+ "condition": [2],
+ "noise": [3],
+ },
+ opset_version=16
+ )
+
+
+if __name__ == "__main__":
+ project_name = "dddsp"
+ model_path = f'{project_name}/model_500000.pt'
+
+ model, _ = load_model_vocoder(model_path)
+
+ # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
+ model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
+
+ # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
+ # model.ExportOnnx(project_name)
+
diff --git a/AIMeiSheng/diffuse_fang/diffusion/solver.py b/AIMeiSheng/diffuse_fang/diffusion/solver.py
new file mode 100644
index 0000000..52657cc
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/solver.py
@@ -0,0 +1,200 @@
+import time
+
+import librosa
+import numpy as np
+import torch
+from torch import autocast
+from torch.cuda.amp import GradScaler
+
+from diffusion.logger import utils
+from diffusion.logger.saver import Saver
+
+
+def test(args, model, vocoder, loader_test, saver):
+ print(' [*] testing...')
+ model.eval()
+
+ # losses
+ test_loss = 0.
+
+ # intialization
+ num_batches = len(loader_test)
+ rtf_all = []
+
+ # run
+ with torch.no_grad():
+ for bidx, data in enumerate(loader_test):
+ fn = data['name'][0].split("/")[-1]
+ speaker = data['name'][0].split("/")[-2]
+ print('--------')
+ print('{}/{} - {}'.format(bidx, num_batches, fn))
+
+ # unpack data
+ for k in data.keys():
+ if not k.startswith('name'):
+ data[k] = data[k].to(args.device)
+ print('>>', data['name'][0])
+
+ # forward
+ st_time = time.time()
+ mel = model(
+ data['units'],
+ data['f0'],
+ data['volume'],
+ data['spk_id'],
+ gt_spec=None if model.k_step_max == model.timesteps else data['mel'],
+ infer=True,
+ infer_speedup=args.infer.speedup,
+ method=args.infer.method,
+ k_step=model.k_step_max
+ )
+ signal = vocoder.infer(mel, data['f0'])
+ ed_time = time.time()
+
+ # RTF
+ run_time = ed_time - st_time
+ song_time = signal.shape[-1] / args.data.sampling_rate
+ rtf = run_time / song_time
+ print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
+ rtf_all.append(rtf)
+
+ # loss
+ for i in range(args.train.batch_size):
+ loss = model(
+ data['units'],
+ data['f0'],
+ data['volume'],
+ data['spk_id'],
+ gt_spec=data['mel'],
+ infer=False,
+ k_step=model.k_step_max)
+ test_loss += loss.item()
+
+ # log mel
+ saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
+
+ # log audi
+ path_audio = data['name_ext'][0]
+ audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
+ saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
+ # report
+ test_loss /= args.train.batch_size
+ test_loss /= num_batches
+
+ # check
+ print(' [test_loss] test_loss:', test_loss)
+ print(' Real Time Factor', np.mean(rtf_all))
+ return test_loss
+
+
+def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
+ # saver
+ saver = Saver(args, initial_global_step=initial_global_step)
+
+ # model size
+ params_count = utils.get_network_paras_amount({'model': model})
+ saver.log_info('--- model size ---')
+ saver.log_info(params_count)
+
+ # run
+ num_batches = len(loader_train)
+ model.train()
+ saver.log_info('======= start training =======')
+ scaler = GradScaler()
+ if args.train.amp_dtype == 'fp32':
+ dtype = torch.float32
+ elif args.train.amp_dtype == 'fp16':
+ dtype = torch.float16
+ elif args.train.amp_dtype == 'bf16':
+ dtype = torch.bfloat16
+ else:
+ raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
+ saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
+ for epoch in range(args.train.epochs):
+ for batch_idx, data in enumerate(loader_train):
+ saver.global_step_increment()
+ optimizer.zero_grad()
+
+ # unpack data
+ for k in data.keys():
+ if not k.startswith('name'):
+ data[k] = data[k].to(args.device)
+
+ # forward
+ if dtype == torch.float32:
+ loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
+ aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False, k_step=model.k_step_max)
+ else:
+ with autocast(device_type=args.device, dtype=dtype):
+ loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
+ aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False, k_step=model.k_step_max)
+
+ # handle nan loss
+ if torch.isnan(loss):
+ raise ValueError(' [x] nan loss ')
+ else:
+ # backpropagate
+ if dtype == torch.float32:
+ loss.backward()
+ optimizer.step()
+ else:
+ scaler.scale(loss).backward()
+ scaler.step(optimizer)
+ scaler.update()
+ scheduler.step()
+
+ # log loss
+ if saver.global_step % args.train.interval_log == 0:
+ current_lr = optimizer.param_groups[0]['lr']
+ saver.log_info(
+ 'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
+ epoch,
+ batch_idx,
+ num_batches,
+ args.env.expdir,
+ args.train.interval_log/saver.get_interval_time(),
+ current_lr,
+ loss.item(),
+ saver.get_total_time(),
+ saver.global_step
+ )
+ )
+
+ saver.log_value({
+ 'train/loss': loss.item()
+ })
+
+ saver.log_value({
+ 'train/lr': current_lr
+ })
+
+ # validation
+ if saver.global_step % args.train.interval_val == 0:
+ optimizer_save = optimizer if args.train.save_opt else None
+
+ # save latest
+ saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
+ last_val_step = saver.global_step - args.train.interval_val
+ if last_val_step % args.train.interval_force_save != 0:
+ saver.delete_model(postfix=f'{last_val_step}')
+
+ # run testing set
+ test_loss = test(args, model, vocoder, loader_test, saver)
+
+ # log loss
+ saver.log_info(
+ ' --- <validation> --- \nloss: {:.3f}. '.format(
+ test_loss,
+ )
+ )
+
+ saver.log_value({
+ 'validation/loss': test_loss
+ })
+
+ model.train()
+
+
diff --git a/AIMeiSheng/diffuse_fang/diffusion/uni_pc.py b/AIMeiSheng/diffuse_fang/diffusion/uni_pc.py
new file mode 100644
index 0000000..72d8f51
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/uni_pc.py
@@ -0,0 +1,733 @@
+import math
+
+import torch
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ dtype=torch.float32,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+ t = self.inverse_lambda(lambda_t)
+ ===============================================================
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+ 1. For discrete-time DPMs:
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+ Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+ 2. For continuous-time DPMs:
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+ schedule are the default settings in DDPM and improved-DDPM:
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+ T: A `float` number. The ending time of the forward process.
+ ===============================================================
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' or 'cosine' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+ Example:
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+ """
+
+ if schedule not in ['discrete', 'linear', 'cosine']:
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.total_N = len(log_alphas)
+ self.T = 1.
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
+ self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype)
+ else:
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+ self.cosine_s = 0.008
+ self.cosine_beta_max = 999.
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+ self.schedule = schedule
+ if schedule == 'cosine':
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+ self.T = 0.9946
+ else:
+ self.T = 1.
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+ elif self.schedule == 'cosine':
+ def log_alpha_fn(s):
+ return torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0))
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+ return log_alpha_t
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0**2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+ else:
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ def t_fn(log_alpha_t):
+ return torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s
+ t = t_fn(log_alpha)
+ return t
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ condition=None,
+ unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ return (x - alpha_t * output) / sigma_t
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ return alpha_t * output + sigma_t * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ return -sigma_t * output
+
+ def cond_grad_fn(x, t_input):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * sigma_t * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class UniPC:
+ def __init__(
+ self,
+ model_fn,
+ noise_schedule,
+ algorithm_type="data_prediction",
+ correcting_x0_fn=None,
+ correcting_xt_fn=None,
+ thresholding_max_val=1.,
+ dynamic_thresholding_ratio=0.995,
+ variant='bh1'
+ ):
+ """Construct a UniPC.
+
+ We support both data_prediction and noise_prediction.
+ """
+ self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
+ self.noise_schedule = noise_schedule
+ assert algorithm_type in ["data_prediction", "noise_prediction"]
+
+ if correcting_x0_fn == "dynamic_thresholding":
+ self.correcting_x0_fn = self.dynamic_thresholding_fn
+ else:
+ self.correcting_x0_fn = correcting_x0_fn
+
+ self.correcting_xt_fn = correcting_xt_fn
+ self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
+ self.thresholding_max_val = thresholding_max_val
+
+ self.variant = variant
+ self.predict_x0 = algorithm_type == "data_prediction"
+
+ def dynamic_thresholding_fn(self, x0, t=None):
+ """
+ The dynamic thresholding method.
+ """
+ dims = x0.dim()
+ p = self.dynamic_thresholding_ratio
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with corrector).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - sigma_t * noise) / alpha_t
+ if self.correcting_x0_fn is not None:
+ x0 = self.correcting_x0_fn(x0)
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.predict_x0:
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3,] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3,] * (K - 1) + [1]
+ else:
+ orders = [3,] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2,] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2,] * (K - 1) + [1]
+ elif order == 1:
+ K = steps
+ orders = [1,] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_to_zero_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
+ if len(t.shape) == 0:
+ t = t.view(-1)
+ if 'bh' in self.variant:
+ return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+ else:
+ assert self.variant == 'vary_coeff'
+ return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+
+ def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_t = ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = (lambda_prev_i - lambda_prev_0) / h
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ K = len(rks)
+ # build C matrix
+ C = []
+
+ col = torch.ones_like(rks)
+ for k in range(1, K + 1):
+ C.append(col)
+ col = col * rks / (k + 1)
+ C = torch.stack(C, dim=1)
+
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ C_inv_p = torch.linalg.inv(C[:-1, :-1])
+ A_p = C_inv_p
+
+ if use_corrector:
+ #print('using corrector')
+ C_inv = torch.linalg.inv(C)
+ A_c = C_inv
+
+ hh = -h if self.predict_x0 else h
+ h_phi_1 = torch.expm1(hh)
+ h_phi_ks = []
+ factorial_k = 1
+ h_phi_k = h_phi_1
+ for k in range(1, K + 2):
+ h_phi_ks.append(h_phi_k)
+ h_phi_k = h_phi_k / hh - 1 / factorial_k
+ factorial_k *= (k + 1)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ sigma_t / sigma_prev_0 * x
+ - alpha_t * h_phi_1 * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ else:
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ x_t_ = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * h_phi_1) * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ return x_t, model_t
+
+ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = (lambda_prev_i - lambda_prev_0) / h
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ R = []
+ b = []
+
+ hh = -h if self.predict_x0 else h
+ h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
+ h_phi_k = h_phi_1 / hh - 1
+
+ factorial_i = 1
+
+ if self.variant == 'bh1':
+ B_h = hh
+ elif self.variant == 'bh2':
+ B_h = torch.expm1(hh)
+ else:
+ raise NotImplementedError()
+
+ for i in range(1, order + 1):
+ R.append(torch.pow(rks, i - 1))
+ b.append(h_phi_k * factorial_i / B_h)
+ factorial_i *= (i + 1)
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
+
+ R = torch.stack(R)
+ b = torch.cat(b)
+
+ # now predictor
+ use_predictor = len(D1s) > 0 and x_t is None
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ if x_t is None:
+ # for order 2, we use a simplified version
+ if order == 2:
+ rhos_p = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
+ else:
+ D1s = None
+
+ if use_corrector:
+ #print('using corrector')
+ # for order 1, we use a simplified version
+ if order == 1:
+ rhos_c = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_c = torch.linalg.solve(R, b)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ sigma_t / sigma_prev_0 * x
+ - alpha_t * h_phi_1 * model_prev_0
+ )
+
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - alpha_t * B_h * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
+ else:
+ x_t_ = (
+ torch.exp(log_alpha_t - log_alpha_prev_0) * x
+ - sigma_t * h_phi_1 * model_prev_0
+ )
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - sigma_t * B_h * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
+ return x_t, model_t
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
+ method='multistep', lower_order_final=True, denoise_to_zero=False, atol=0.0078, rtol=0.05, return_intermediate=False,
+ ):
+ """
+ Compute the sample at time `t_end` by UniPC, given the initial `x` at time `t_start`.
+ """
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
+ if return_intermediate:
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
+ if self.correcting_xt_fn is not None:
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
+ device = x.device
+ intermediates = []
+ with torch.no_grad():
+ if method == 'multistep':
+ assert steps >= order
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ assert timesteps.shape[0] - 1 == steps
+ # Init the initial values.
+ step = 0
+ t = timesteps[step]
+ t_prev_list = [t]
+ model_prev_list = [self.model_fn(x, t)]
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+
+ # Init the first `order` values by lower order multistep UniPC.
+ for step in range(1, order):
+ t = timesteps[step]
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, t, step, use_corrector=True)
+ if model_x is None:
+ model_x = self.model_fn(x, t)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ t_prev_list.append(t)
+ model_prev_list.append(model_x)
+
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
+ for step in range(order, steps + 1):
+ t = timesteps[step]
+ if lower_order_final:
+ step_order = min(order, steps + 1 - step)
+ else:
+ step_order = order
+ if step == steps:
+ #print('do not run corrector at the last step')
+ use_corrector = False
+ else:
+ use_corrector = True
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, t, step_order, use_corrector=use_corrector)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step)
+ if return_intermediate:
+ intermediates.append(x)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ if model_x is None:
+ model_x = self.model_fn(x, t)
+ model_prev_list[-1] = model_x
+ else:
+ raise ValueError("Got wrong method {}".format(method))
+
+ if denoise_to_zero:
+ t = torch.ones((1,)).to(device) * t_0
+ x = self.denoise_to_zero_fn(x, t)
+ if self.correcting_xt_fn is not None:
+ x = self.correcting_xt_fn(x, t, step + 1)
+ if return_intermediate:
+ intermediates.append(x)
+ if return_intermediate:
+ return x, intermediates
+ else:
+ return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,)*(dims - 1)]
\ No newline at end of file
diff --git a/AIMeiSheng/diffuse_fang/diffusion/unit2mel.py b/AIMeiSheng/diffuse_fang/diffusion/unit2mel.py
new file mode 100644
index 0000000..5087f2a
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/unit2mel.py
@@ -0,0 +1,167 @@
+import os
+
+import numpy as np
+import torch
+import torch.nn as nn
+import yaml
+
+from .diffusion import GaussianDiffusion
+from .vocoder import Vocoder
+from .wavenet import WaveNet
+
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def load_model_vocoder(
+ model_path,
+ device='cpu',
+ config_path = None
+ ):
+ if config_path is None:
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
+ else:
+ config_file = config_path
+
+ with open(config_file, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+
+ # load vocoder
+ vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
+
+ # load model
+ model = Unit2Mel(
+ args.data.encoder_out_channels,
+ args.model.n_spk,
+ args.model.use_pitch_aug,
+ vocoder.dimension,
+ args.model.n_layers,
+ args.model.n_chans,
+ args.model.n_hidden,
+ args.model.timesteps,
+ args.model.k_step_max
+ )
+
+ print(' [Loading] ' + model_path)
+ ckpt = torch.load(model_path, map_location=torch.device(device))
+ model.to(device)
+ model.load_state_dict(ckpt['model'])
+ model.eval()
+ print(f'Loaded diffusion model, sampler is {args.infer.method}, speedup: {args.infer.speedup} ')
+ return model, vocoder, args
+
+
+class Unit2Mel(nn.Module):
+ def __init__(
+ self,
+ input_channel,
+ n_spk,
+ use_pitch_aug=False,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256,
+ timesteps=1000,
+ k_step_max=1000
+ ):
+ super().__init__()
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
+ self.f0_embed = nn.Linear(1, n_hidden)
+ self.volume_embed = nn.Linear(1, n_hidden)
+ if use_pitch_aug:
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
+ else:
+ self.aug_shift_embed = None
+ self.n_spk = n_spk
+ if n_spk is not None and n_spk > 1:
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
+
+ self.timesteps = timesteps if timesteps is not None else 1000
+ self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max<self.timesteps else self.timesteps
+
+ self.n_hidden = n_hidden
+ # diffusion
+ self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden),timesteps=self.timesteps,k_step=self.k_step_max, out_dims=out_dims)
+ self.input_channel = input_channel
+
+ def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
+ if self.n_spk is not None and self.n_spk > 1:
+ if spk_mix_dict is not None:
+ spk_embed_mix = torch.zeros((1,1,self.hidden_size))
+ for k, v in spk_mix_dict.items():
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
+ spk_embeddd = self.spk_embed(spk_id_torch)
+ self.speaker_map[k] = spk_embeddd
+ spk_embed_mix = spk_embed_mix + v * spk_embeddd
+ x = x + spk_embed_mix
+ else:
+ x = x + self.spk_embed(spk_id - 1)
+ self.speaker_map = self.speaker_map.unsqueeze(0)
+ self.speaker_map = self.speaker_map.detach()
+ return x.transpose(1, 2)
+
+ def init_spkmix(self, n_spk):
+ self.speaker_map = torch.zeros((n_spk,1,1,self.n_hidden))
+ hubert_hidden_size = self.input_channel
+ n_frames = 10
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
+ f0 = torch.randn((1, n_frames))
+ volume = torch.randn((1, n_frames))
+ spks = {}
+ for i in range(n_spk):
+ spks.update({i:1.0/float(self.n_spk)})
+ self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
+
+ def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+
+ if not self.training and gt_spec is not None and k_step>self.k_step_max:
+ raise Exception("The shallow diffusion k_step is greater than the maximum diffusion k_step(k_step_max)!")
+
+ if not self.training and gt_spec is None and self.k_step_max!=self.timesteps:
+ raise Exception("This model can only be used for shallow diffusion and can not infer alone!")
+
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
+ if self.n_spk is not None and self.n_spk > 1:
+ if spk_mix_dict is not None:
+ for k, v in spk_mix_dict.items():
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
+ x = x + v * self.spk_embed(spk_id_torch)
+ else:
+ if spk_id.shape[1] > 1:
+ g = spk_id.reshape((spk_id.shape[0], spk_id.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
+ g = g * self.speaker_map # [N, S, B, 1, H]
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
+ x = x + g
+ else:
+ x = x + self.spk_embed(spk_id)
+ if self.aug_shift_embed is not None and aug_shift is not None:
+ x = x + self.aug_shift_embed(aug_shift / 5)
+ x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
+
+ return x
+
diff --git a/AIMeiSheng/diffuse_fang/diffusion/vocoder.py b/AIMeiSheng/diffuse_fang/diffusion/vocoder.py
new file mode 100644
index 0000000..ec9c80e
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/vocoder.py
@@ -0,0 +1,95 @@
+import torch
+from torchaudio.transforms import Resample
+
+from vdecoder.nsf_hifigan.models import load_config, load_model
+from vdecoder.nsf_hifigan.nvSTFT import STFT
+
+
+class Vocoder:
+ def __init__(self, vocoder_type, vocoder_ckpt, device = None):
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+
+ if vocoder_type == 'nsf-hifigan':
+ self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
+ elif vocoder_type == 'nsf-hifigan-log10':
+ self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
+ else:
+ raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
+
+ self.resample_kernel = {}
+ self.vocoder_sample_rate = self.vocoder.sample_rate()
+ self.vocoder_hop_size = self.vocoder.hop_size()
+ self.dimension = self.vocoder.dimension()
+
+ def extract(self, audio, sample_rate, keyshift=0):
+
+ # resample
+ if sample_rate == self.vocoder_sample_rate:
+ audio_res = audio
+ else:
+ key_str = str(sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
+ audio_res = self.resample_kernel[key_str](audio)
+
+ # extract
+ mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
+ return mel
+
+ def infer(self, mel, f0):
+ f0 = f0[:,:mel.size(1),0] # B, n_frames
+ audio = self.vocoder(mel, f0)
+ return audio
+
+
+class NsfHifiGAN(torch.nn.Module):
+ def __init__(self, model_path, device=None):
+ super().__init__()
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+ self.model_path = model_path
+ self.model = None
+ self.h = load_config(model_path)
+ self.stft = STFT(
+ self.h.sampling_rate,
+ self.h.num_mels,
+ self.h.n_fft,
+ self.h.win_size,
+ self.h.hop_size,
+ self.h.fmin,
+ self.h.fmax)
+
+ def sample_rate(self):
+ return self.h.sampling_rate
+
+ def hop_size(self):
+ return self.h.hop_size
+
+ def dimension(self):
+ return self.h.num_mels
+
+ def extract(self, audio, keyshift=0):
+ mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
+ return mel
+
+ def forward(self, mel, f0):
+ if self.model is None:
+ print('| Load HifiGAN: ', self.model_path)
+ self.model, self.h = load_model(self.model_path, device=self.device)
+ with torch.no_grad():
+ c = mel.transpose(1, 2)
+ audio = self.model(c, f0)
+ return audio
+
+class NsfHifiGANLog10(NsfHifiGAN):
+ def forward(self, mel, f0):
+ if self.model is None:
+ print('| Load HifiGAN: ', self.model_path)
+ self.model, self.h = load_model(self.model_path, device=self.device)
+ with torch.no_grad():
+ c = 0.434294 * mel.transpose(1, 2)
+ audio = self.model(c, f0)
+ return audio
\ No newline at end of file
diff --git a/AIMeiSheng/diffuse_fang/diffusion/wavenet.py b/AIMeiSheng/diffuse_fang/diffusion/wavenet.py
new file mode 100644
index 0000000..30404d3
--- /dev/null
+++ b/AIMeiSheng/diffuse_fang/diffusion/wavenet.py
@@ -0,0 +1,110 @@
+import math
+from math import sqrt
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import Mish
+
+
+class Conv1d(torch.nn.Conv1d):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ nn.init.kaiming_normal_(self.weight)
+
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x):
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
+ emb = x[:, None] * emb[None, :]
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class ResidualBlock(nn.Module):
+ def __init__(self, encoder_hidden, residual_channels, dilation):
+ super().__init__()
+ self.residual_channels = residual_channels
+ self.dilated_conv = nn.Conv1d(
+ residual_channels,
+ 2 * residual_channels,
+ kernel_size=3,
+ padding=dilation,
+ dilation=dilation
+ )
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
+ self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
+ self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
+
+ def forward(self, x, conditioner, diffusion_step):
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
+ conditioner = self.conditioner_projection(conditioner)
+ y = x + diffusion_step
+
+ y = self.dilated_conv(y) + conditioner
+
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
+ gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+ y = torch.sigmoid(gate) * torch.tanh(filter)
+
+ y = self.output_projection(y)
+
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+ return (x + residual) / math.sqrt(2.0), skip
+
+
+class WaveNet(nn.Module):
+ def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
+ super().__init__()
+ self.input_projection = Conv1d(in_dims, n_chans, 1)
+ self.diffusion_embedding = SinusoidalPosEmb(n_chans)
+ self.mlp = nn.Sequential(
+ nn.Linear(n_chans, n_chans * 4),
+ Mish(),
+ nn.Linear(n_chans * 4, n_chans)
+ )
+ self.residual_layers = nn.ModuleList([
+ ResidualBlock(
+ encoder_hidden=n_hidden,
+ residual_channels=n_chans,
+ dilation=1
+ )
+ for i in range(n_layers)
+ ])
+ self.skip_projection = Conv1d(n_chans, n_chans, 1)
+ self.output_projection = Conv1d(n_chans, in_dims, 1)
+ nn.init.zeros_(self.output_projection.weight)
+
+ def forward(self, spec, diffusion_step, cond):
+ """
+ :param spec: [B, 1, M, T]
+ :param diffusion_step: [B, 1]
+ :param cond: [B, M, T]
+ :return:
+ """
+ x = spec.squeeze(1)
+ #x = x.half() #fang add
+ x = self.input_projection(x) # [B, residual_channel, T]
+
+ x = F.relu(x)
+ diffusion_step = self.diffusion_embedding(diffusion_step)
+ #diffusion_step = diffusion_step.half() #fangadd
+ diffusion_step = self.mlp(diffusion_step)
+ skip = []
+ for layer in self.residual_layers:
+ x, skip_connection = layer(x, cond, diffusion_step)
+ skip.append(skip_connection)
+
+ x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
+ x = self.skip_projection(x)
+ x = F.relu(x)
+ x = self.output_projection(x) # [B, mel_bins, T]
+ return x[:, None, :, :]
diff --git a/AIMeiSheng/lib/infer_pack/__pycache__/attentions_in_dec.cpython-38.pyc b/AIMeiSheng/lib/infer_pack/__pycache__/attentions_in_dec.cpython-38.pyc
deleted file mode 100644
index e398b08..0000000
Binary files a/AIMeiSheng/lib/infer_pack/__pycache__/attentions_in_dec.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/lib/infer_pack/__pycache__/commons.cpython-38.pyc b/AIMeiSheng/lib/infer_pack/__pycache__/commons.cpython-38.pyc
deleted file mode 100644
index f4bfdd8..0000000
Binary files a/AIMeiSheng/lib/infer_pack/__pycache__/commons.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/lib/infer_pack/__pycache__/models_embed_in_dec_diff_fi.cpython-38.pyc b/AIMeiSheng/lib/infer_pack/__pycache__/models_embed_in_dec_diff_fi.cpython-38.pyc
deleted file mode 100644
index 98fa5b1..0000000
Binary files a/AIMeiSheng/lib/infer_pack/__pycache__/models_embed_in_dec_diff_fi.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/lib/infer_pack/__pycache__/modules.cpython-38.pyc b/AIMeiSheng/lib/infer_pack/__pycache__/modules.cpython-38.pyc
deleted file mode 100644
index 42763e2..0000000
Binary files a/AIMeiSheng/lib/infer_pack/__pycache__/modules.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/lib/infer_pack/__pycache__/transforms.cpython-38.pyc b/AIMeiSheng/lib/infer_pack/__pycache__/transforms.cpython-38.pyc
deleted file mode 100644
index 088ec9e..0000000
Binary files a/AIMeiSheng/lib/infer_pack/__pycache__/transforms.cpython-38.pyc and /dev/null differ
diff --git a/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc.py b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc.py
new file mode 100644
index 0000000..afd1f8a
--- /dev/null
+++ b/AIMeiSheng/lib/infer_pack/models_embed_in_dec_diff_control_enc.py
@@ -0,0 +1,1275 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions_in_dec as attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+from thop import profile
+from diffuse_fang.diffUse_wraper import diff_decoder,ddpm_para
+ddpm_dp = ddpm_para()
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ #self.emb_g = nn.Linear(256, hidden_channels)
+
+ def forward(self, phone, pitch, lengths,g):#fang add
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch) #+ self.emb_g(g)
+ #print("@@@x:",x.shape)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ #print("@@@x1:",x.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ #x = self.encoder(x * x_mask, x_mask,g)
+ x = self.encoder(x * x_mask, x_mask,g)#fang add
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask,x
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)#均值和方差 fang
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask ##随机采样 fang
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ self.ups_g = nn.ModuleList()# fang add
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ self.ups_g.append(
+ nn.Conv1d(upsample_initial_channel,upsample_initial_channel // (2 ** (i + 1) ), 1)
+ #F.interpolate(input, scale_factor=2, mode='nearest')
+ )# fang add
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ #x = x + self.cond(g) ##org
+ tmp_g = self.cond(g) ##fang add
+ x = x + tmp_g ##fang add
+ #print('###@@@@##x:',x.shape )
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xg = self.ups_g[i](tmp_g) #fang add
+ x = x + xg #fang add
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ #print('@@@@##x:',x.shape)
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+ "24k": 24000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ #print("@@@pitch.shape: ",pitch.shape)
+ #g = ds.unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ ) #按照self.segment_size这个长度,进行随机切割z,长度固定,开始位置不同存在ids_slice中,z_slice是切割的结果, fang
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ print('z shape: ',z.shape)
+ print('x_mask shape: ',x_mask.shape)
+ z_x_mask = z * x_mask
+ print('z_x_mask shape: ',z_x_mask.shape)
+ print('nsff0 shape:p', nsff0.shape)
+ print('g shape: ',g.shape)
+ o = self.dec(z * x_mask, nsff0, g=g)
+
+ self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+ def get_floats(self,):
+ T = 21.4 #郭宇_但愿人长久_40k.wav
+ z = torch.randn(1,192 ,2740)# 2s data(同时用2s数据验证,整数倍就对了,防止干扰)
+ x_mask = torch.randn(1,1 ,2740)
+ g = torch.randn(1,256 ,1)
+
+ inputs_bfcc = z #z * x_mask
+ nsff0 = torch.randn(1, 2740)
+ devices = 'cuda' #'cpu'
+ self.dec = self.dec.to(devices).half()
+ inputs_bfcc , nsff0, g = inputs_bfcc.to(devices).half(), nsff0.to(devices).half(), g.to(devices).half()
+ flops, params = profile(self.dec, (inputs_bfcc, nsff0, g))
+ print(f'@@@hifi-gan nsf decflops: {flops/(T*pow(10,9))} GFLOPS, params: { params/pow(10,6)} M')
+ return 0
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ #for p in self.flow.parameters():
+ # p.requires_grad=False
+ #for p in self.enc_p.parameters():
+ # p.requires_grad=False
+
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ self.diff_decoder = diff_decoder
+ #self.diff_cond_g = nn.Conv1d(256,192, 1)
+ self.diff_cond_gx = self.zero_module(self.conv_nd(1, 256, 192, 3, padding=1))
+ self.diff_cond_out = self.zero_module(self.conv_nd(1, 192, 192, 3, padding=1))
+ self.lzp = 0.1
+
+ def zero_module(self,module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+ def conv_nd(self, dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ #g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ #print("@@@@@fang@@@@@")
+ g = ds.unsqueeze(-1)
+ #print("g:",g.size())
+ #print("phone_lengths: ",phone_lengths.size())
+ #print("pitch: ",pitch.size())
+ #m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)#self.enc_q = PosteriorEncoder ##这里面预测出了随机采样的隐变量z,m_q是均值,logs_q是方差,y_mask是mask的数据 fangi
+
+ z_p = self.flow(z, y_mask, g=g)# z是y_msk的输入
+ z_p_sample = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * y_mask
+ zx = self.flow(z_p_sample, y_mask, g=g, reverse=True)
+ #print("@@@@@g:",g.shape)
+ g_z_p = self.diff_cond_gx(g)
+ #print("@@@@@g_z_p:",g_z_p.shape)
+ z_res = z - zx
+
+ #print('#######x_embed:',x_embed.shape)
+ #print('#######z_p_sample:',z_p_sample.shape)
+ #z_p1 = z_p_sample + g_z_p
+ z_p1 = x_embed + g_z_p
+ ###diff st
+ z_p_diff = z_p1.transpose(1,2) ##b,frames,feat
+ z_diff = z_res.transpose(1,2) ##b,frames,feat
+
+ diff_loss,_ = self.diff_decoder(z_p_diff, gt_spec=z_diff, infer=False, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, use_tqdm=ddpm_dp.use_tqdm)
+
+ #self.diff_decoder = self.diff_decoder.float()
+ #print("@@@z: ",z.shape)
+ #b = z_p_diff.shape[0]
+ t = 200#torch.randint(0, 1000, (b,), device=g.device).long()
+ z_diff = zx.transpose(1,2)
+ z_x_diff = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=t, use_tqdm=False)
+ #print("@@@z_x: ",z_x.shape)
+ z1 = z_x_diff.transpose(1,2)
+ z1 = self.diff_cond_out(z1)
+ z_in = (zx + z1)
+ #z_p = z_p_rec.transpose(1,2)
+ ##diff en
+ ##oneflow
+ #z_p = self.flow(z, y_mask, g=g)
+
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z_in, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q),diff_loss
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ #m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) #org
+ m_p, logs_p, x_mask, x_embed = self.enc_p(phone, pitch, phone_lengths,g) #fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+
+ g_z_p = self.diff_cond_gx(g)
+ #z_p1 = z_p + g_z_p
+ z_p1 = x_embed + g_z_p
+ #if is_half:
+ #self.diff_decoder = self.diff_decoder.float()
+ z_p_diff = z_p1.transpose(1,2).float() ##b,frames,feat
+ z_diff = z.transpose(1,2) ##b,frames,feat
+ #print("@@z_p_diff", z_p_diff[0,0,:])
+ self.diff_decoder = self.diff_decoder.float()
+ z_x = self.diff_decoder(z_p_diff, gt_spec=z_diff*self.lzp, infer=True, infer_speedup=ddpm_dp.infer_speedup, method=ddpm_dp.method, k_step=200, use_tqdm=ddpm_dp.use_tqdm)
+ #print("@@z_x", z_x[0,0,:])
+ z1 = z_x.transpose(1,2).half()
+ z_res = self.diff_cond_out(z1)
+ z = z + z_res
+ o = self.dec(z * x_mask, nsff0, g=g)
+ #self.get_floats()
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ #g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ g = ds.unsqueeze(-1)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) #org
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ #g = self.emb_g(sid).unsqueeze(-1)
+ g = sid.unsqueeze(-1).unsqueeze(0)
+ #m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths,g=g)#fang add
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/AIMeiSheng/meisheng_env_preparex.py b/AIMeiSheng/meisheng_env_preparex.py
index a7bc0db..f0c9854 100644
--- a/AIMeiSheng/meisheng_env_preparex.py
+++ b/AIMeiSheng/meisheng_env_preparex.py
@@ -1,37 +1,38 @@
import os
from AIMeiSheng.docker_demo.common import (gs_svc_model_path, gs_hubert_model_path, gs_embed_model_path,
gs_rmvpe_model_path, download2disk)
def meisheng_env_prepare(logging, AIMeiSheng_Path='./'):
cos_path = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/dataset/AIMeiSheng/"
rmvpe_model_url = cos_path + "rmvpe.pt"
if not os.path.exists(gs_rmvpe_model_path):
if not download2disk(rmvpe_model_url, gs_rmvpe_model_path):
logging.fatal(f"download rmvpe_model err={rmvpe_model_url}")
gs_hubert_model_url = cos_path + "hubert_base.pt"
if not os.path.exists(gs_hubert_model_path):
if not download2disk(gs_hubert_model_url, gs_hubert_model_path):
logging.fatal(f"download hubert_model err={gs_hubert_model_url}")
- model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth"
+ #model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth"
+ model_svc = "xusong_v2_org_version_alldata_embed1_enzx_diff_ocean_ctl_enc_e22_s363704.pth"
base_dir = os.path.dirname(gs_svc_model_path)
os.makedirs(base_dir, exist_ok=True)
svc_model_url = cos_path + model_svc
if not os.path.exists(gs_svc_model_path):
if not download2disk(svc_model_url, gs_svc_model_path):
logging.fatal(f"download svc_model err={svc_model_url}")
model_embed = "model.pt"
base_dir = os.path.dirname(gs_embed_model_path)
os.makedirs(base_dir, exist_ok=True)
embed_model_url = cos_path + model_embed
if not os.path.exists(gs_embed_model_path):
if not download2disk(embed_model_url, gs_embed_model_path):
logging.fatal(f"download embed_model err={embed_model_url}")
if __name__ == "__main__":
meisheng_env_prepare()
diff --git a/AIMeiSheng/meisheng_svc_final.py b/AIMeiSheng/meisheng_svc_final.py
index e6e1ec2..9a5d94f 100644
--- a/AIMeiSheng/meisheng_svc_final.py
+++ b/AIMeiSheng/meisheng_svc_final.py
@@ -1,224 +1,227 @@
import os
import sys
sys.path.append(os.path.dirname(__file__))
import time
import shutil
import glob
import hashlib
import librosa
import soundfile
import gradio as gr
import pandas as pd
import numpy as np
from AIMeiSheng.RawNet3.infererence_fang_meisheng import get_embed, get_embed_model
from myinfer_multi_spk_embed_in_dec_diff_fi_meisheng import svc_main, load_hubert, get_vc, get_rmvpe
from gender_classify import load_gender_model
from AIMeiSheng.docker_demo.common import gs_svc_model_path, gs_embed_model_path, gs_rmvpe_model_path, gs_err_code_target_silence
+from slicex.slice_set_silence import del_noise
gs_simple_mixer_path = "/data/gpu_env_common/bin/simple_mixer" ##混音执行文件
tmp_workspace_name = "batch_test_ocean_fi" # 工作空间名
song_folder = "./data_meisheng/" ##song folder
gs_work_dir = f"./data_meisheng/{tmp_workspace_name}" # 工作空间路径
pth_model_path = "./weights/xusong_v2_org_version_alldata_embed1_enzx_diff_fi_e15_s244110.pth" ##模型文件
cur_dir = os.path.abspath(os.path.dirname(__file__))
abs_path = os.path.join(cur_dir, song_folder, tmp_workspace_name) + '/'
f0_method = None
def mix(in_path, acc_path, dst_path):
# svc转码到442
svc_442_file = in_path + "_442.wav"
st = time.time()
cmd = "ffmpeg -i {} -ar 44100 -ac 2 -y {} -loglevel fatal".format(in_path, svc_442_file)
os.system(cmd)
if not os.path.exists(svc_442_file):
return -1
print("transcode,{},sp={}".format(in_path, time.time() - st))
# 混合
st = time.time()
cmd = "{} {} {} {} 1".format(gs_simple_mixer_path, svc_442_file, acc_path, dst_path)
os.system(cmd)
print("mixer,{},sp={}".format(in_path, time.time() - st))
def load_model():
global f0_method
embed_model = get_embed_model(gs_embed_model_path)
hubert_model = load_hubert()
get_vc(gs_svc_model_path)
f0_method = get_rmvpe(gs_rmvpe_model_path)
print("model preload finish!!!")
return embed_model, hubert_model # ,svc_model
def meisheng_init():
embed_model, hubert_model = load_model() ##提前加载模型
gender_model = load_gender_model()
return embed_model, hubert_model, gender_model
def pyin_process_single_rmvpe(input_file):
global f0_method
if f0_method is None:
f0_method = get_rmvpe()
rate = 16000 # 44100
# 读取音频文件
y, sr = librosa.load(input_file, sr=rate)
len_s = len(y) / sr
lim_s = 15 # 10
if (len_s > lim_s):
y1 = y[:sr * lim_s]
y2 = y[-sr * lim_s:]
f0 = f0_method.infer_from_audio(y1, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
mean_pitch1 = np.mean(valid_f0)
f0 = f0_method.infer_from_audio(y2, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
mean_pitch2 = np.mean(valid_f0)
if abs(mean_pitch1 - mean_pitch2) > 55:
mean_pitch_cur = min(mean_pitch1, mean_pitch2)
else:
mean_pitch_cur = (mean_pitch1 + mean_pitch2) / 2
else:
f0 = f0_method.infer_from_audio(y, thred=0.03)
f0 = f0[f0 < 600]
valid_f0 = f0[f0 > 50]
mean_pitch_cur = np.mean(valid_f0)
return mean_pitch_cur
def meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras):
##计算pitch
f0up_key = pyin_process_single_rmvpe(target_wav)
if f0up_key < 40 or np.isnan(f0up_key):#unvoice
return gs_err_code_target_silence
## get embed, 音色
get_embed(target_wav, embed_npy, embed_md)
print("svc main start...")
svc_main(song_wav, svc_out_path, embed_npy, f0up_key, hubert_md, paras)
print("svc main finished!!")
+ del_noise(song_wav,svc_out_path)
+ print("del noise in silence")
return 0
def process_svc_online(song_wav, target_wav, svc_out_path, embed_md, hubert_md, paras):
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
err_code = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras)
return err_code
def process_svc(song_wav, target_wav, svc_out_path, embed_md, hubert_md, paras):
song_wav1, target_wav, svc_out_path = os.path.basename(song_wav), os.path.basename(
target_wav), os.path.basename(svc_out_path) # 绝对路径
song_wav, target_wav, svc_out_path = song_wav, abs_path + target_wav, abs_path + svc_out_path
embed_npy = target_wav[:-4] + '.npy' ##embd npy存储位置
# similar = meisheng_svc(song_wav,target_wav,svc_out_path,embed_npy,paras)
similar = meisheng_svc(song_wav, target_wav, svc_out_path, embed_npy, embed_md, hubert_md, paras)
return similar
def get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras):
'''
:param target_yinse_wav: 目标音色
:param song_name: 歌曲名字
;param paras: 其他参数
:return: svc路径名
'''
##清空工作空间临时路径
if os.path.exists(gs_work_dir):
# shutil.rmtree(gs_work_dir)
cmd = f"rm -rf {gs_work_dir}/*"
os.system(cmd)
else:
os.makedirs(gs_work_dir)
gender = paras['gender'] ##为了确定歌曲
##目标音色读取
f_dst = os.path.join(gs_work_dir, os.path.basename(target_yinse_wav))
# print("dir :", f_dst,"target_yinse_wav:",target_yinse_wav)
# shutil.move(target_yinse_wav, f_dst) ##放在工作目录
shutil.copy(target_yinse_wav, f_dst)
target_yinse_wav = f_dst
##歌曲/伴奏 读取(路径需要修改)
song_wav = os.path.join("{}{}/{}/vocal321.wav".format(song_folder, gender, song_name)) # 歌曲vocal
inf_acc_path = os.path.join("{}{}/{}/acc.wav".format(song_folder, gender, song_name))
# song_wav = './xusong_long.wav'
svc_out_path = os.path.join(gs_work_dir, "svc.wav") ###svc结果名字
print("inputMsg:", song_wav, target_yinse_wav, svc_out_path)
## svc process
st = time.time()
print("start inference...")
similar = process_svc(song_wav, target_yinse_wav, svc_out_path, embed_model, hubert_model, paras)
print("svc finished!!")
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(svc_out_path))
# '''
##加混响
print("add reverbration...")
svc_out_path_effect = svc_out_path[:-4] + '_effect.wav'
cmd = f"/data/gpu_env_common/bin/effect_tool {svc_out_path} {svc_out_path_effect}"
print("cmd :", cmd)
os.system(cmd)
# # 人声伴奏合并
print("add acc...")
out_path = svc_out_path_effect[:-4] + '_music.wav'
mix(svc_out_path_effect, inf_acc_path, out_path)
print("time cost = {}".format(time.time() - st))
print("out path name {} ".format(out_path))
# '''
return svc_out_path
def meisheng_func(target_yinse_wav, song_name, paras):
##init
embed_model, hubert_model, gender_model = meisheng_init()
###gender predict
gender, female_rate, is_pure = gender_model.process(target_yinse_wav)
print('=====================')
print("gender:{}, female_rate:{},is_pure:{}".format(gender, female_rate, is_pure))
if gender == 0:
gender = 'female'
elif gender == 1:
gender = 'male'
elif female_rate > 0.5:
gender = 'female'
else:
gender = 'male'
print("modified gender:{} ".format(gender))
print('=====================')
##美声main
paras['gender'] = gender ##单位都是ms
get_svc(target_yinse_wav, song_name, embed_model, hubert_model, paras)
if __name__ == '__main__':
# target_yinse_wav = "./raw/meisheng_yinse/female/changying.wav" # 需要完整路径
target_yinse_wav = "./raw/meisheng_yinse/female/target_yinse_cloris.m4a"
song_name = "lost_stars" ##歌曲名字
paras = {'gender': None, 'tst': 0, "tnd": None, 'delay': 0, 'song_path': None}
# paras = {'gender': 'female', 'tst': 0, "tnd": 30, 'delay': 0} ###片段svc测试
meisheng_func(target_yinse_wav, song_name, paras)
diff --git a/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_fi_meisheng.py b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_fi_meisheng.py
index f1da5a9..4a60e74 100644
--- a/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_fi_meisheng.py
+++ b/AIMeiSheng/myinfer_multi_spk_embed_in_dec_diff_fi_meisheng.py
@@ -1,217 +1,217 @@
import os,sys,pdb,torch
now_dir = os.getcwd()
sys.path.append(now_dir)
import argparse
import glob
import sys
import torch
from multiprocessing import cpu_count
class Config:
def __init__(self,device,is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
current_dir = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(current_dir, "configs")
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16系/10系显卡和P40强制单精度")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"{config_path}/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"{config_path}/{config_file}", "w") as f:
f.write(strr)
with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open(f"{current_dir}/trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
self.is_half = True
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 80 #60
x_max = 85#65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max
index_path="./logs/xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_muloss_show/added_IVF614_Flat_nprobe_1_xusong_v2_org_version_multispk_charlie_puth_embed_in_dec_show_v2.index"
# f0method="rmvpe" #harvest or pm
index_rate=float("0.0") #index rate
device="cuda:0"
is_half=True
filter_radius=int(3) ##3
resample_sr=int(0) # 0
rms_mix_rate=float(1) # rms混合比例 1,不等于1混合
protect=float(0.33 )## ??? 0.33 fang
#print(sys.argv)
config=Config(device,is_half)
now_dir=os.getcwd()
sys.path.append(now_dir)
from vc_infer_pipeline_org_embed import VC
-from lib.infer_pack.models_embed_in_dec_diff_fi import (
+from lib.infer_pack.models_embed_in_dec_diff_control_enc import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from lib.audio import load_audio
from fairseq import checkpoint_utils
from scipy.io import wavfile
from AIMeiSheng.docker_demo.common import gs_hubert_model_path
# hubert_model=None
def load_hubert():
# global hubert_model
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([gs_hubert_model_path],suffix="",)
#models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["checkpoint_best_legacy_500.pt"],suffix="",)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if(is_half):hubert_model = hubert_model.half()
else:hubert_model = hubert_model.float()
hubert_model.eval()
return hubert_model
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,hubert_model,paras):
global tgt_sr,net_g,vc,version
if input_audio is None:return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
# print("@@xxxf0_up_key:",f0_up_key)
audio = load_audio(input_audio,16000)
if paras != None:
st = int(paras['tst'] * 16000/1000)
en = len(audio)
if paras['tnd'] != None:
en = min(en,int(paras['tnd'] * 16000/1000))
audio = audio[st:en]
times = [0, 0, 0]
if(hubert_model==None):
hubert_model = load_hubert()
if_f0 = cpt.get("f0", 1)
audio_opt=vc.pipeline_mulprocess(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius,tgt_sr,resample_sr,rms_mix_rate,version,protect,f0_file=f0_file)
#print(times)
#print("@@using multi process")
return audio_opt
def get_vc_core(model_path,is_half):
#print("loading pth %s" % model_path)
cpt = torch.load(model_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1: #
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
#print("load model finished")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
#print("load net_g finished")
return tgt_sr,net_g,cpt,version
def get_vc1(model_path,is_half):
tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
net_g.eval().to(device)
if (is_half):net_g = net_g.half()
else:net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk=cpt["config"][-3]
return
def get_rmvpe(model_path="rmvpe.pt"):
from lib.rmvpe import RMVPE
global f0_method
#print("loading rmvpe model")
f0_method = RMVPE(model_path, is_half=True, device='cuda')
return f0_method
def get_vc(model_path):
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half,version
tgt_sr, net_g, cpt, version = get_vc_core(model_path, is_half)
net_g.eval().to(device)
if (is_half):net_g = net_g.half()
else:net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk=cpt["config"][-3]
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
# return net_g
def svc_main(input_path,opt_path,sid_embed,f0up_key=0,hubert_model=None, paras=None):
#print("sid_embed: ",sid_embed)
wav_opt = vc_single(sid_embed,input_path,f0up_key,None,f0_method,index_path,index_rate,hubert_model,paras)
#print("out_path: ",opt_path)
wavfile.write(opt_path, tgt_sr, wav_opt)
diff --git a/AIMeiSheng/slicex/slice_set_silence.py b/AIMeiSheng/slicex/slice_set_silence.py
new file mode 100644
index 0000000..f1b51b6
--- /dev/null
+++ b/AIMeiSheng/slicex/slice_set_silence.py
@@ -0,0 +1,59 @@
+# -*- coding: utf-8 -*-
+
+
+import librosa # Optional. Use any library you like to read audio files.
+import soundfile # Optional. Use any library you like to write audio files.
+from slicex.slicer_torch import Slicer
+
+
+class silce_silence():
+ def __init__(self, sr):
+ # audio = torch.from_numpy(audio)
+ self.slicer = Slicer(
+ sr=sr,
+ threshold=-40,
+ min_length=5000,
+ min_interval=300,
+ hop_size=10,
+ max_sil_kept=500
+ )
+
+ def set_silence(self,chunks,sr, target_audio, target_sr):
+ '''
+ :param chunks: slice结果 of song wav
+ :param sr: song in sr
+ :param target_audio: svc_out
+ :param target_sr: svc_out sr
+ :return:
+ '''
+ # target_audio = np.zeros(int(len(audio)*target_sr/sr),1)
+ # result = []
+ for k, v in chunks.items():
+ tag = v["split_time"].split(",")
+ # if tag[0] != tag[1]:
+ # result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
+
+ if( tag[0] != tag[1] and v["slice"] == True):#静音
+ st = int(int(tag[0])*target_sr/sr)
+ en = min(int(int(tag[1])*target_sr/sr), len(target_audio))
+ target_audio[st:en] = 0#0.001 * target_audio[st:en]
+ return target_audio
+
+ def cut(self, audio):
+ chunks = self.slicer.slice(audio)
+ chunks = dict(chunks)
+ return chunks
+
+def del_noise(wav_in,svc_out):
+ audio, sr = librosa.load(wav_in, sr=None) # Load an audio file with librosa.
+ target_audio, target_sr = librosa.load(svc_out, sr=None) # Load an audio file with librosa.
+
+
+ slice_sil = silce_silence(sr)
+ chunks = slice_sil.cut(audio)
+ target_audio1 = slice_sil.set_silence(chunks, sr, target_audio, target_sr)
+ soundfile.write(svc_out, target_audio1, target_sr)
+ return
+
+
+
diff --git a/AIMeiSheng/slicex/slicer_torch.py b/AIMeiSheng/slicex/slicer_torch.py
new file mode 100644
index 0000000..5b33fcc
--- /dev/null
+++ b/AIMeiSheng/slicex/slicer_torch.py
@@ -0,0 +1,118 @@
+import librosa
+import torch
+#import torchaudio
+
+
+class Slicer:
+ def __init__(self,
+ sr: int,
+ threshold: float = -40.,
+ min_length: int = 5000,
+ min_interval: int = 300,
+ hop_size: int = 20,
+ max_sil_kept: int = 5000):
+ if not min_length >= min_interval >= hop_size:
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
+ if not max_sil_kept >= hop_size:
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
+ min_interval = sr * min_interval / 1000
+ self.threshold = 10 ** (threshold / 20.)
+ self.hop_size = round(sr * hop_size / 1000)
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
+ self.min_interval = round(min_interval / self.hop_size)
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
+
+ def _apply_slice(self, waveform, begin, end):
+ if len(waveform.shape) > 1:
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
+ else:
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
+
+ # @timeit
+ def slice(self, waveform):
+ if len(waveform.shape) > 1:
+ samples = librosa.to_mono(waveform)
+ else:
+ samples = waveform
+ if samples.shape[0] <= self.min_length:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
+ sil_tags = []
+ silence_start = None
+ clip_start = 0
+ for i, rms in enumerate(rms_list):
+ # Keep looping while frame is silent.
+ if rms < self.threshold:
+ # Record start of silent frames.
+ if silence_start is None:
+ silence_start = i
+ continue
+ # Keep looping while frame is not silent and silence start has not been recorded.
+ if silence_start is None:
+ continue
+ # Clear recorded silence start if interval is not enough or clip is too short
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
+ if not is_leading_silence and not need_slice_middle:
+ silence_start = None
+ continue
+ # Need slicing. Record the range of silent frames to be removed.
+ if i - silence_start <= self.max_sil_kept:
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
+ if silence_start == 0:
+ sil_tags.append((0, pos))
+ else:
+ sil_tags.append((pos, pos))
+ clip_start = pos
+ elif i - silence_start <= self.max_sil_kept * 2:
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
+ pos += i - self.max_sil_kept
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ clip_start = pos_r
+ else:
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
+ clip_start = max(pos_r, pos)
+ else:
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ else:
+ sil_tags.append((pos_l, pos_r))
+ clip_start = pos_r
+ silence_start = None
+ # Deal with trailing silence.
+ total_frames = rms_list.shape[0]
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
+ sil_tags.append((pos, total_frames + 1))
+ # Apply and return slices.
+ if len(sil_tags) == 0:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ else:
+ chunks = []
+ # 第一段静音并非从头开始,补上有声片段
+ if sil_tags[0][0]:
+ chunks.append(
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
+ for i in range(0, len(sil_tags)):
+ # 标识有声片段(跳过第一段)
+ if i:
+ chunks.append({"slice": False,
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
+ # 标识所有静音片段
+ chunks.append({"slice": True,
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
+ # 最后一段静音并非结尾,补上结尾片段
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
+ chunk_dict = {}
+ for i in range(len(chunks)):
+ chunk_dict[str(i)] = chunks[i]
+ return chunk_dict
+

File Metadata

Mime Type
text/x-diff
Expires
Sun, Jan 12, 08:34 (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1347206
Default Alt Text
(281 KB)

Event Timeline