Page MenuHomePhabricator

No OneTemporary

diff --git a/AIMeiSheng/._readme_meisheng.md b/AIMeiSheng/._readme_meisheng.md
deleted file mode 100644
index 50212ca..0000000
Binary files a/AIMeiSheng/._readme_meisheng.md and /dev/null differ
diff --git a/AIMeiSheng/docker_demo/common.py b/AIMeiSheng/docker_demo/common.py
index 098cba8..64aba31 100644
--- a/AIMeiSheng/docker_demo/common.py
+++ b/AIMeiSheng/docker_demo/common.py
@@ -1,121 +1,122 @@
import os
import sys
import time
# import logging
import urllib, urllib.request
# 测试/正式环境
gs_prod = True
# if len(sys.argv) > 1 and sys.argv[1] == "prod":
# gs_prod = True
# print(gs_prod)
gs_tmp_dir = "/tmp/ai_meisheng_tmp"
gs_model_dir = "/tmp/ai_meisheng_models"
gs_resource_cache_dir = "/tmp/ai_meisheng_resource_cache"
gs_embed_model_path = os.path.join(gs_model_dir, "RawNet3/models/weights/model.pt")
gs_svc_model_path = os.path.join(gs_model_dir,
"weights/xusong_v2_org_version_alldata_embed_spkenx200x_double_e14_s90706.pth")
gs_hubert_model_path = os.path.join(gs_model_dir, "hubert.pt")
gs_rmvpe_model_path = os.path.join(gs_model_dir, "rmvpe.pt")
gs_embed_model_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/best_model.pth.tar")
gs_embed_config_spk_path = os.path.join(gs_model_dir, "SpeakerEncoder/pretrained_model/config.json")
# errcode
gs_err_code_success = 0
gs_err_code_download_vocal = 100
gs_err_code_download_svc_url = 101
gs_err_code_svc_process = 102
gs_err_code_transcode = 103
gs_err_code_volume_adjust = 104
gs_err_code_upload = 105
gs_err_code_params = 106
gs_err_code_pending = 107
gs_err_code_target_silence = 108
gs_err_code_too_many_connections = 429
+gs_err_code_gender_classify = 430
gs_redis_conf = {
"host": "av-credis.starmaker.co",
"port": 6379,
"pwd": "lKoWEhz%jxTO",
}
gs_server_redis_conf = {
"producer": "test_ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "test_ai_meisheng_key_", # 存储结果情况
}
if gs_prod:
gs_server_redis_conf = {
"producer": "ai_meisheng_producer", # 输入的队列
"ai_meisheng_key_prefix": "ai_meisheng_key_", # 存储结果情况
}
gs_feishu_conf = {
"url": "http://sg-prod-songbook-webmp-1:8000/api/feishu/people",
"users": [
"18810833785", # 杨建利
"17778007843", # 王健军
"18612496315" # 郭子豪
]
}
def download2disk(url, dst_path):
try:
urllib.request.urlretrieve(url, dst_path)
return os.path.exists(dst_path)
except Exception as ex:
print(f"download url={url} error", ex)
return False
def exec_cmd(cmd):
# gs_logger.info(cmd)
print(cmd)
ret = os.system(cmd)
if ret != 0:
return False
return True
def exec_cmd_and_result(cmd):
r = os.popen(cmd)
text = r.read()
r.close()
return text
def upload_file2cos(key, file_path, region='ap-singapore', bucket_name='av-audit-sync-sg-1256122840'):
"""
将文件上传到cos
:param key: 桶上的具体地址
:param file_path: 本地文件地址
:param region: 区域
:param bucket_name: 桶地址
:return:
"""
gs_coscmd = "coscmd"
gs_coscmd_conf = "~/.cos.conf"
cmd = "{} -c {} -r {} -b {} upload {} {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, file_path, key)
if exec_cmd(cmd):
cmd = "{} -c {} -r {} -b {} info {}".format(gs_coscmd, gs_coscmd_conf, region, bucket_name, key) \
+ "| grep Content-Length |awk \'{print $2}\'"
res_str = exec_cmd_and_result(cmd)
# logging.info("{},res={}".format(key, res_str))
size = float(res_str)
if size > 0:
return True
return False
return False
def check_input(input_data):
key_list = ["record_song_url", "target_url", "start", "end", "vocal_loudness", "female_recording_url",
"male_recording_url"]
for key in key_list:
if key not in input_data.keys():
return False
return True
diff --git a/AIMeiSheng/docker_demo/svc_online.py b/AIMeiSheng/docker_demo/svc_online.py
index a52ab24..f12143f 100644
--- a/AIMeiSheng/docker_demo/svc_online.py
+++ b/AIMeiSheng/docker_demo/svc_online.py
@@ -1,190 +1,194 @@
# -*- coding: UTF-8 -*-
"""
SVC的核心处理逻辑
"""
import os
import time
import socket
import shutil
import hashlib
from AIMeiSheng.meisheng_svc_final import load_model, process_svc_online
from AIMeiSheng.cos_similar_ui_zoom import cos_similar
from AIMeiSheng.meisheng_env_preparex import meisheng_env_prepare
from AIMeiSheng.voice_classification.online.voice_class_online_fang import VoiceClass, download_volume_balanced
from AIMeiSheng.docker_demo.common import *
import logging
hostname = socket.gethostname()
log_file_name = f"{os.path.dirname(os.path.abspath(__file__))}/av_meisheng_{hostname}.log"
# 设置logger
svc_offline_logger = logging.getLogger("svc_offline")
file_handler = logging.FileHandler(log_file_name)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S')
file_handler.setFormatter(formatter)
if gs_prod:
svc_offline_logger.addHandler(file_handler)
if os.path.exists(gs_tmp_dir):
shutil.rmtree(gs_tmp_dir)
os.makedirs(gs_model_dir, exist_ok=True)
os.makedirs(gs_resource_cache_dir, exist_ok=True)
# 预设参数
gs_gender_models_url = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/hub/voice_classification/models.zip"
gs_volume_bin_url = "https://av-audit-sync-sg-1256122840.cos.ap-singapore.myqcloud.com/dataset/AIMeiSheng/ebur128_tool"
class GSWorkerAttr:
def __init__(self, input_data):
# 取出输入资源
vocal_url = input_data["record_song_url"]
target_url = input_data["target_url"]
start = input_data["start"] # 单位是ms
end = input_data["end"] # 单位是ms
vocal_loudness = input_data["vocal_loudness"]
female_recording_url = input_data["female_recording_url"]
male_recording_url = input_data["male_recording_url"]
self.distinct_id = hashlib.md5(vocal_url.encode()).hexdigest()
self.tmp_dir = os.path.join(gs_tmp_dir, self.distinct_id)
if os.path.exists(self.tmp_dir):
shutil.rmtree(self.tmp_dir)
os.makedirs(self.tmp_dir)
self.vocal_url = vocal_url
self.target_url = target_url
ext = vocal_url.split(".")[-1]
self.vocal_path = os.path.join(self.tmp_dir, self.distinct_id + f"_in.{ext}")
self.target_wav_path = os.path.join(self.tmp_dir, self.distinct_id + "_out.wav")
self.target_wav_ad_path = os.path.join(self.tmp_dir, self.distinct_id + "_out_ad.wav")
self.target_path = os.path.join(self.tmp_dir, self.distinct_id + "_out.m4a")
self.female_svc_source_url = female_recording_url
self.male_svc_source_url = male_recording_url
ext = female_recording_url.split(".")[-1]
self.female_svc_source_path = os.path.join(gs_resource_cache_dir,
hashlib.md5(female_recording_url.encode()).hexdigest() + "." + ext)
ext = male_recording_url.split(".")[-1]
self.male_svc_source_path = os.path.join(gs_resource_cache_dir,
hashlib.md5(male_recording_url.encode()).hexdigest() + "." + ext)
self.st_tm = start
self.ed_tm = end
self.target_loudness = vocal_loudness
def log_info_name(self):
return f"d_id={self.distinct_id}, vocal_url={self.vocal_url}"
def rm_cache(self):
if os.path.exists(self.tmp_dir):
shutil.rmtree(self.tmp_dir)
def init_gender_model():
"""
下载模型
:return:
"""
dst_model_dir = os.path.join(gs_model_dir, "voice_classification")
if not os.path.exists(dst_model_dir):
dst_zip_path = os.path.join(gs_model_dir, "models.zip")
if not download2disk(gs_gender_models_url, dst_zip_path):
svc_offline_logger.fatal(f"download gender_model err={gs_gender_models_url}")
cmd = f"cd {gs_model_dir}; unzip {dst_zip_path}; mv models voice_classification; rm -f {dst_zip_path}"
os.system(cmd)
if not os.path.exists(dst_model_dir):
svc_offline_logger.fatal(f"unzip {dst_zip_path} err")
music_voice_pure_model = os.path.join(dst_model_dir, "voice_005_rec_v5.pth")
music_voice_no_pure_model = os.path.join(dst_model_dir, "voice_10_v5.pth")
gender_pure_model = os.path.join(dst_model_dir, "gender_8k_ratev5_v6_adam.pth")
gender_no_pure_model = os.path.join(dst_model_dir, "gender_8k_v6_adam.pth")
vc = VoiceClass(music_voice_pure_model, music_voice_no_pure_model, gender_pure_model, gender_no_pure_model)
return vc
def init_svc_model():
meisheng_env_prepare(logging, gs_model_dir)
embed_model, hubert_model = load_model()
cs_sim = cos_similar()
return embed_model, hubert_model,cs_sim
def download_volume_adjustment():
"""
下载音量调整工具
:return:
"""
volume_bin_path = os.path.join(gs_model_dir, "ebur128_tool")
if not os.path.exists(volume_bin_path):
if not download2disk(gs_volume_bin_url, volume_bin_path):
svc_offline_logger.fatal(f"download volume_bin err={gs_volume_bin_url}")
os.system(f"chmod +x {volume_bin_path}")
def volume_adjustment(wav_path, target_loudness, out_path):
"""
音量调整
:param wav_path:
:param target_loudness:
:param out_path:
:return:
"""
volume_bin_path = os.path.join(gs_model_dir, "ebur128_tool")
cmd = f"{volume_bin_path} {wav_path} {target_loudness} {out_path}"
os.system(cmd)
class SVCOnline:
def __init__(self):
st = time.time()
self.gender_model = init_gender_model()
self.embed_model, self.hubert_model, self.cs_sim = init_svc_model()
download_volume_adjustment()
download_volume_balanced()
svc_offline_logger.info(f"svc init finished, sp = {time.time() - st}")
def gender_process(self, worker_attr):
st = time.time()
gender, female_rate, is_pure = self.gender_model.process(worker_attr.vocal_path)
svc_offline_logger.info(
f"{worker_attr.vocal_url}, gender={gender}, female_rate={female_rate}, is_pure={is_pure}, "
f"gender_process sp = {time.time() - st}")
if gender == 0:
gender = 'female'
elif gender == 1:
gender = 'male'
+ elif female_rate == None:
+ gender = 'male'
+ return gender, gs_err_code_gender_classify
elif female_rate > 0.5:
gender = 'female'
else:
gender = 'male'
+
svc_offline_logger.info(f"{worker_attr.vocal_url}, modified gender={gender}")
# err = gs_err_code_success
# if female_rate == -1:
# err = gs_err_code_target_silence
return gender, gs_err_code_success
def process(self, worker_attr):
gender, err = self.gender_process(worker_attr)
if err != gs_err_code_success:
return gender, err
song_path = worker_attr.female_svc_source_path
if gender == "male":
song_path = worker_attr.male_svc_source_path
params = {'gender': gender, 'tst': worker_attr.st_tm, "tnd": worker_attr.ed_tm, 'delay': 0, 'song_path': None}
st = time.time()
err_code = process_svc_online(song_path, worker_attr.vocal_path, worker_attr.target_wav_path, self.embed_model,
self.hubert_model, self.cs_sim, params)
svc_offline_logger.info(f"{worker_attr.vocal_url}, err_code={err_code} process svc sp = {time.time() - st}")
return gender, err_code
diff --git a/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py b/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py
index 076184f..f1e8f48 100644
--- a/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py
+++ b/AIMeiSheng/vc_infer_pipeline_org_embed_spk.py
@@ -1,778 +1,781 @@
import numpy as np, parselmouth, torch, pdb, sys, os
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa, torchcrepe
from scipy import signal
from functools import lru_cache
now_dir = os.getcwd()
sys.path.append(now_dir)
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav = {}
fidx = 0
import threading
import concurrent.futures
@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
audio = input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
) # 每半秒一个点
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.from_numpy(rms2)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
torch.pow(rms1, torch.tensor(1 - rate))
* torch.pow(rms2, torch.tensor(rate - 1))
).numpy()
return data2
class VC(object):
def __init__(self, tgt_sr, config):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad, ##config会根据设备配置不通知如:3
config.x_query, # 10 等于x_max-x_center)*2
config.x_center, #60
config.x_max, #65
config.is_half,
)
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query # 查询切点前后查询时间,
self.t_center = self.sr * self.x_center # 查询切点位置
self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device
def get_f0(
self,
input_audio_path,
x,
p_len,
f0_up_key,
f0_method,
filter_radius,
inp_f0=None,
):
global input_audio_path2wav
time_step = self.window / self.sr * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
if f0_method == "pm":
f0 = (
parselmouth.Sound(x, self.sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif f0_method == "harvest":
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe":
model = "full"
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
elif f0_method == "rmvpe":
if hasattr(self, "model_rmvpe") == False:
from lib.rmvpe import RMVPE
print("loading rmvpe model")
self.model_rmvpe = RMVPE(
"rmvpe.pt", is_half=self.is_half, device=self.device
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
else: ##for meisheng
self.model_rmvpe = f0_method
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
##这里读文件,更改pitch st fang
valid_f0 = f0[f0 > 50]
mean_pitch_cur = np.mean(valid_f0[:min(len(valid_f0),500)])
-
#print("@@f0_up_key:",f0_up_key)
deta = 0
if(f0_up_key > 50 ):
deta = -mean_pitch_cur + f0_up_key
#print("$$$$$$$$$fangxxxxx pitch shift: ",deta)
- f0_up_key = int(np.log2(deta/(mean_pitch_cur + 1) + 1) * 12)##方法2 fang
- if( abs(f0_up_key) <= 8 ):
+ f0_up_key = np.log2(deta/(mean_pitch_cur + 1) + 1) * 12
+ if np.isnan(f0_up_key):
f0_up_key = 0
- elif f0_up_key > 8:
+ f0_up_key = int(f0_up_key)
+ #f0_up_key = int(np.log2(deta/(mean_pitch_cur + 1) + 1) * 12)##方法2 fang
+ if( f0_up_key >= 12 ):
f0_up_key = 12
- elif f0_up_key < -8:
+ elif f0_up_key < -12:
f0_up_key = -12
+ else:
+ f0_up_key = 0
#if( abs(f0_up_key) < 3 ):
# f0_up_key = 0
- f0_up_key = max(min(12,f0_up_key),-12)
+ # f0_up_key = max(min(12,f0_up_key),-12)
#print("f0_up_key: ",f0_up_key)
f0 *= pow(2, f0_up_key / 12)#这块是音调更改 fang 我设置的0
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(int)
return f0_coarse, f0bak # 1-0
def vc(
self,
model,
net_g,
sid,
audio0,
pitch,
pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
#print("@@@feats: ",feats.shape)
#print("@@@padding_mask: ",padding_mask.shape)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
#"output_layer": 6 if version == "v1" else 12,
}
t0 = ttime()
#'''
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]#为何v1要转化,维度问题??? fang
#'''
#print("@@@feats: ",feats.shape)
'''
global fidx
feats_name = f"./feats_{fidx}.pt"
fidx += 1
torch.save(feats, feats_name)
feats = torch.load(feats_name)
#'''
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half:
npy = npy.astype("float32")
# _, I = index.search(npy, 1)
# npy = big_npy[I.squeeze()]
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)##基于index和实际音频的特征进行组合,作为输入 fang
#print("@@@feats: ",feats.shape)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
0, 2, 1
)#feats0的维度1 插值增加一倍 fang
t1 = ttime()
p_len = audio0.shape[0] // self.window ##分帧求pitch fang
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch != None and pitchf != None:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
#print("###feats:",feats.shape,"pitch:",pitch.shape,"p_len:",p_len)
with torch.no_grad():
if pitch != None and pitchf != None:
audio1 = (
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
.data.cpu()
.float()
.numpy()
)
else:
audio1 = (
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
)
del feats, p_len, padding_mask
if torch.cuda.is_available():
torch.cuda.empty_cache()
t2 = ttime()
times[0] += t1 - t0
times[2] += t2 - t1
return audio1
def pipeline(
self,
model,
net_g,
sid,
audio,## input wav
input_audio_path, #input wav name
times,
f0_up_key,
f0_method,# f0 meathod
file_index, #index 路径
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None,
):
if (
file_index != "" #.index文件不为空 fang
# and file_big_npy != ""
# and os.path.exists(file_big_npy) == True
and os.path.exists(file_index) == True
and index_rate != 0
):
try:
index = faiss.read_index(file_index)
# big_npy = np.load(file_big_npy)
big_npy = index.reconstruct_n(0, index.ntotal)
except:
traceback.print_exc()
index = big_npy = None
else:
index = big_npy = None
#print("####audio 1:",audio.shape)
audio = signal.filtfilt(bh, ah, audio)
#print("####audio 2:",audio.shape)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
#print("###t_max:",self.t_max)
#print("###window:",self.window,"self.t_query:",self.t_query,"self.t_pad2:",self.t_pad2)
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]#这样算循环了,每个idx是过去一帧的值的和 fang
for t in range(self.t_center, audio.shape[0], self.t_center):#一分钟一帧?? fang
opt_ts.append(
t
- self.t_query
+ np.where(
np.abs(audio_sum[t - self.t_query : t + self.t_query])
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
)[0][0]
)#返回[ t - self.t_query, t+self.t_query] 区间最小值位置的索引保存,fang
s = 0
audio_opt = []
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
if hasattr(f0_file, "name") == True:
try:
with open(f0_file.name, "r") as f:
lines = f.read().strip("\n").split("\n")
inp_f0 = []
for line in lines:
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype="float32")
except:
traceback.print_exc()
#sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
sid_embed = np.load(sid)
sid = torch.FloatTensor(sid_embed).to(self.device).half()
pitch, pitchf = None, None
if if_f0 == 1:
pitch, pitchf = self.get_f0(
input_audio_path,
audio_pad,
p_len,
f0_up_key,
f0_method,
filter_radius,
inp_f0,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if self.device == "mps":
pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
#print("&&&&pitch: ",pitchf)
t2 = ttime()
times[1] += t2 - t1
#print("####len(audio_pad):",len(audio_pad))
#print("###pitch:", pitch.shape)
for t in opt_ts: #分段推理每段音频,一段这里设置60s左右 fang
t = t // self.window * self.window
if if_f0 == 1:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
s = t
if if_f0 == 1: ##后面是最后一段处理 fang
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
pitch[:, t // self.window :] if t is not None else pitch,
pitchf[:, t // self.window :] if t is not None else pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if resample_sr >= 16000 and tgt_sr != resample_sr:
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1:
max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
del pitch, pitchf, sid
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio_opt
def infer_core_fang(self,para1,para2,para3,idx,
model,
net_g,
sid,
times,
index,
big_npy,
index_rate,
version,
protect):
return [ self.vc(
model,
net_g,
sid,
para1, para2, para3,
# audio_pad[s: t + self.t_pad2 + self.window],
# pitch[:, s // self.window: (t + self.t_pad2) // self.window],
# pitchf[:, s // self.window: (t + self.t_pad2) // self.window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt: -self.t_pad_tgt], idx]
def ThreadPool_process_core(self, func_process,params1,params2,params3,
model,
net_g,
sid,
# audio_pad[s: t + self.t_pad2 + self.window],
# pitch[:, s // self.window: (t + self.t_pad2) // self.window],
# pitchf[:, s // self.window: (t + self.t_pad2) // self.window],
times,
index,
big_npy,
index_rate,
version,
protect
):
num_threads = 2
futures = []
sort_ret = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
for idx in range(len(params1)):
para1 = params1[idx]
para2 = params2[idx]
para3 = params3[idx]
ret = executor.submit(self.infer_core_fang,para1,para2,para3,idx,
model,
net_g,
sid,
times,
index,
big_npy,
index_rate,
version,
protect)
futures.append(ret)
cnt = 0
for future in concurrent.futures.as_completed(futures):
cnt += 1
#print(f"process finised {cnt}, and index :{future.result()[1]}")
#print(future.result()) # result
# print(future.result()[1]) ##index
sort_ret[str(future.result()[1])] = future.result()[0]
fea_list = []
for idx in range(len(sort_ret)):
fea_list.append(sort_ret[str(idx)])
return fea_list
def pipeline_mulprocess(
self,
model,
net_g,
sid,
audio, ## input wav
input_audio_path, # input wav name
times,
f0_up_key,
f0_method, # f0 meathod
file_index, # index 路径
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None,
):
if (
file_index != "" # .index文件不为空 fang
# and file_big_npy != ""
# and os.path.exists(file_big_npy) == True
and os.path.exists(file_index) == True
and index_rate != 0
):
try:
index = faiss.read_index(file_index)
# big_npy = np.load(file_big_npy)
big_npy = index.reconstruct_n(0, index.ntotal)
except:
traceback.print_exc()
index = big_npy = None
else:
index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i: i - self.window] # 这样算循环了,每个idx是过去一帧的值的和 fang
for t in range(self.t_center, audio.shape[0], self.t_center): # 一分钟一帧?? fang
opt_ts.append(
t
- self.t_query
+ np.where(
np.abs(audio_sum[t - self.t_query: t + self.t_query])
== np.abs(audio_sum[t - self.t_query: t + self.t_query]).min()
)[0][0]
) # 返回[ t - self.t_query, t+self.t_query] 区间最小值位置的索引保存,fang
s = 0
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
if hasattr(f0_file, "name") == True:
try:
with open(f0_file.name, "r") as f:
lines = f.read().strip("\n").split("\n")
inp_f0 = []
for line in lines:
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype="float32")
except:
traceback.print_exc()
# sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
sid_embed = np.load(sid)
embed_npy_spk = sid[:-4] + '_spk.npy'
sid_spk_embed = np.load(embed_npy_spk )
print("555555sid_embed:",np.shape(sid_embed),'type:',type(sid_embed))
print('sid_spk_embed:', np.shape(sid_spk_embed), 'type:',type(sid_spk_embed))
sid_embed = np.concatenate((sid_embed, sid_spk_embed),axis=0)
print('sid_embed:', np.shape(sid_embed), 'type:',type(sid_embed))
sid = torch.FloatTensor(sid_embed).to(self.device).half()
#sid_embed = np.load(sid)
#sid = torch.FloatTensor(sid_embed).to(self.device).half()
print('sid:',sid.shape)
pitch, pitchf = None, None
#'''
if if_f0 == 1:
pitch, pitchf = self.get_f0(
input_audio_path,
audio_pad,
p_len,
f0_up_key,
f0_method,
filter_radius,
inp_f0,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if self.device == "mps":
pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
#'''
'''
pitch_name = "./pitch_pitchf.npz"
#np.savez(pitch_name, pitch = pitch.detach().cpu().numpy(), pitchf = pitchf.detach().cpu().numpy())
npz_obj = np.load(pitch_name) #文件名的后缀为npz
pitch, pitchf = npz_obj['pitch'], npz_obj['pitchf']
pitch = torch.tensor(pitch, device=self.device).long()
pitchf = torch.tensor(pitchf, device=self.device).float()
#'''
t2 = ttime()
times[1] += t2 - t1
audio_opt = []
audio_pad_list = []
pitch_list = []
pitchf_list = []
for t in opt_ts: # 分段推理每段音频,一段这里设置60s左右 fang
t = t // self.window * self.window
audio_pad_list.append(audio_pad[s: t + self.t_pad2 + self.window])
pitch_list.append(pitch[:, s // self.window: (t + self.t_pad2) // self.window])
pitchf_list.append(pitchf[:, s // self.window: (t + self.t_pad2) // self.window])
s = t
audio_pad_list.append(audio_pad[t:])
pitch_list.append(pitch[:, t // self.window:] if t is not None else pitch)
pitchf_list.append(pitchf[:, t // self.window:] if t is not None else pitchf)
audio_opt = self.ThreadPool_process_core(self.infer_core_fang, audio_pad_list, pitch_list, pitchf_list,
model,
net_g,
sid,
times,
index,
big_npy,
index_rate,
version,
protect
)
'''
if if_f0 == 1: ##后面是最后一段处理 fang
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
pitch[:, t // self.window:] if t is not None else pitch,
pitchf[:, t // self.window:] if t is not None else pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt: -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt: -self.t_pad_tgt]
)
#'''
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if resample_sr >= 16000 and tgt_sr != resample_sr:
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1:
max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
del pitch, pitchf, sid
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio_opt

File Metadata

Mime Type
text/x-diff
Expires
Sun, Jan 12, 04:10 (1 d, 6 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1347136
Default Alt Text
(42 KB)

Event Timeline